- #1
Islam Hassan
- 235
- 5
Energy and momentum only differ by a factor of V/2. So in essence, at a fundamental level, does this mean that the conservation of energy is the conservation of momentum in disguise?
IH
IH
Please explain what you mean by this.However, momentum is carried away equally in all directions, so that what is lost in one direction is "added back" by the loss in the opposite direction.
Bill_K said:Please explain what you mean by this.
atyy said:Momentum is a vector, while energy is a scalar. There are elastic collisions where both are conserved, while only momentum is conserved in inelastic collisions. In inelastic collisions, energy and momentum are both carried away by particles we don't explicitly track. However, momentum is carried away equally in all directions, so that what is lost in one direction is "added back" by the loss in the opposite direction.
Islam Hassan said:What about at atomic/particle physics level where *everything* is kinetic: heat, sound, etc. At this level, do the two conservation laws of energy and momentum essentially repeat the same message?
IH
Islam Hassan said:What about at atomic/particle physics level where *everything* is kinetic: heat, sound, etc. At this level, do the two conservation laws of energy and momentum essentially repeat the same message?
IH
The conservation of momentum is a fundamental principle in physics that states that the total momentum of a closed system remains constant. This means that the total amount of motion in a system does not change unless an external force is applied.
Momentum is conserved because in a closed system, any change in momentum in one direction must be balanced by an equal and opposite change in momentum in another direction. This is known as the law of action and reaction.
The conservation of momentum is closely related to the conservation of energy, as energy is essentially the ability to do work. In a closed system, the total energy, including both kinetic and potential energy, remains constant. This means that if there is a change in momentum, there must also be a corresponding change in energy.
The conservation of momentum applies to all physical systems, including everyday situations such as collisions between objects and the motion of planets in the solar system. It is a fundamental principle that helps us understand and predict the behavior of objects in motion.
In theory, the conservation of momentum can only be violated in situations where an external force is applied to a closed system. However, in practical situations, it is possible for momentum to appear to be lost due to factors such as friction and air resistance. In these cases, energy is converted into other forms, such as heat or sound, but the total amount of momentum and energy still remains constant.