Conservation of relativistic energy, collision of particles

In summary, the conversation discusses the concept of maximum number of pions that can be created in a system, and the factors that must be considered to determine this number. These factors include the assumption of pions having zero momentum and the total energy available for particle creation. The conversation also mentions the difficulty in achieving spin-coupling in a particle collider.
  • #1
milkism
118
15
Homework Statement
Collision of a proton and antiproton forming bunch of pions, what's the maximum amount?
Relevant Equations
$$E=\gamma mc^2$$
Question:
ed202d42a87c0599c252b5e9ff5770bd.png

With maximum do they mean that the speed of the pions is the same as the proton and an antiproton? Otherwise there will be two unknowns, and if I use both relativistic-energy and momentum conservation equations I get difficult equations.
 
Physics news on Phys.org
  • #2
milkism said:
With maximum do they mean that the speed of the pions is the same as the proton and an antiproton?
No reason to think that. To find the maximum number of pions, what might you assume about their speeds?
 
  • Like
  • Care
Likes topsquark and milkism
  • #3
Doc Al said:
No reason to think that. To find the maximum number of pions, what might you assume about their speeds?
I have no idea 😭😥,I'm sorry.
 
  • #4
What's the total momentum of the system?
 
  • Like
Likes topsquark and milkism
  • #5
Zero.
 
  • #6
Right! So how about assuming that all the created pions have zero momentum -- all the energy goes into their rest masses.
 
  • Like
  • Love
Likes topsquark and milkism
  • #7
Doc Al said:
What's the total momentum of the
Doc Al said:
Right! So how about assuming that all the created pions have zero momentum -- all the energy goes into their rest masses.
Wouldn't that be $$E=nmc^2$$, with n amount.
 
  • #8
You're given the rest mass of the pions. How much total energy does the system have to create particles with?
 
  • Like
Likes topsquark and milkism
  • #9
Doc Al said:
You're given the rest mass of the pions. How much total energy does the system have to create particles with?
3752 MeV?
 
  • #10
milkism said:
3752 MeV?
You should at least sketch out why you think that. You're right, but you may have made two cancelling mistakes.

So how many pions can you get from that?
 
  • Like
Likes topsquark and milkism
  • #11
Ibix said:
You should at least sketch out why you think that. You're right, but you may have made two cancelling mistakes.

So how many pions can you get from that?
Using $$E=\gamma mc^2$$, calculating the Lorentz factor with the given velocity will be 2, so E becomes 2mc², but because both proton and antiproton have same mass and velocity, the total energy will be 4mc², that's how I got 3752 MeV.
So we have 3752 = nmc² = > 3752 MeV= n *134 MeV => 28 pions.
If the pions had the same velocity as the proton and antiproton it would have be 14 pions, that's what I had at first.
 
  • #12
Right.

Note that they've fudged the numbers so it comes out nice and round. The neutral pion mass is nearly 135MeV, while protons are only a bit over 938MeV. You'd need to speed your protons up a bit more to have enough energy for 28 pions.
 
  • Like
  • Love
Likes topsquark and milkism
  • #13
milkism said:
So we have 3752 = nmc² = > 3752 MeV= n *134 MeV => 28 pions.

Good! (Thanks for jumping in, @Ibix -- I got called away.)
 
  • Like
  • Love
Likes topsquark, Ibix and milkism
  • #14
Doc Al said:
Thanks for jumping in, @Ibix -- I got called away.
Thanks for not saying "butting in". 😁
 
  • Haha
  • Like
Likes topsquark and Doc Al
  • #15
Doc Al said:
What's the total momentum of the system?
Of course, the proton-antiproton pair must be spin-coupled in the singlet state to conserve angular momentum as well. That might be a bit tricky to achieve in a particle collider.
 
  • Like
Likes Doc Al, milkism, Ibix and 1 other person
  • #16
kuruman said:
Of course, the proton-antiproton pair must be spin-coupled in the singlet state to conserve angular momentum as well. That might be a bit tricky to achieve in a particle collider.
Indeed. For the purpose of this exercise I think those worries can be ignored. :wink:
 
  • Like
Likes PeroK

Similar threads

  • Introductory Physics Homework Help
Replies
21
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
525
  • Introductory Physics Homework Help
Replies
10
Views
1K
  • Introductory Physics Homework Help
Replies
1
Views
166
  • Introductory Physics Homework Help
2
Replies
55
Views
2K
  • Introductory Physics Homework Help
Replies
4
Views
873
  • Introductory Physics Homework Help
Replies
2
Views
223
  • Introductory Physics Homework Help
Replies
18
Views
266
  • Introductory Physics Homework Help
Replies
25
Views
2K
  • Introductory Physics Homework Help
Replies
9
Views
169
Back
Top