Conservation of String Exercise

Click For Summary
SUMMARY

The discussion centers on the application of the conservation of string principle in a physics problem involving a symmetric sub-pulley system. Participants emphasize the importance of establishing equations that relate the lengths of string sections to the heights of the masses involved. Key equations include the relationship between the vertical positions of the masses and the center of the pulley, leading to the conclusion that the acceleration of the left mass is the negative average of the accelerations of the right two masses. The discussion highlights the necessity of differentiating these relationships to derive velocity and acceleration equations.

PREREQUISITES
  • Understanding of conservation of string principles in mechanics
  • Familiarity with basic pulley systems and their dynamics
  • Knowledge of differentiation in calculus
  • Ability to set up and solve equations involving multiple variables
NEXT STEPS
  • Study the mechanics of pulley systems, focusing on symmetric configurations
  • Learn how to apply conservation laws in dynamic systems
  • Practice differentiation techniques relevant to physics problems
  • Explore examples of conservation of string problems in classical mechanics
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and dynamics, as well as educators seeking to enhance their understanding of pulley systems and conservation principles.

mancity
Messages
26
Reaction score
2
Homework Statement
Explain why the acceleration of the left mass equals negative the average of the accelerations of the right two masses.
Relevant Equations
Conservation of string
I'm not quite sure how to apply conservation of string to this problem, so guidance would be appreciated. Normally as long as there isn't a "sub-pulley" I can do the problem fairly easily but this one tricks me up. Thanks
 

Attachments

  • 2.png
    2.png
    2.6 KB · Views: 73
Physics news on Phys.org
mancity said:
Normally as long as there isn't a "sub-pulley" I can do the problem fairly easily but this one tricks me up. Thanks
The sub-pulley is symmetric, correct? That is, there is no difference between its right and left hand sides? They are mirror images of each other?
 
jbriggs444 said:
The sub-pulley is symmetric, correct? That is, there is no difference between its right and left hand sides? They are mirror images of each other?
I take the masses as unknown.

mancity said:
I'm not quite sure how to apply conservation of string to this problem,
Write equations relating string (section) lengths to heights of masses, throwing in constants as necessary. Differentiate twice.
 
mancity said:
Homework Statement: Explain why the acceleration of the left mass equals negative the average of the accelerations of the right two masses.
Relevant Equations: Conservation of string

I'm not quite sure how to apply conservation of string to this problem, so guidance would be appreciated. Normally as long as there isn't a "sub-pulley" I can do the problem fairly easily but this one tricks me up. Thanks
'Conservation of string' is an unusual way to state that the length of the string is constant. So when you set up a set of equations for your exercise, one of them is a relationship between
##y_2##, the vertical position of the middle mass,
##y_3##, idem rightmost mass
##y_5##, the vertical position of the center of the pulley on the right:
##y_5-y_2+y_5-y_3=C##

Differentiation wrt time gives an equation for the vertical velocities; a second differentiation yields another for the accelerations.

##\ ##
 
mancity said:
Homework Statement: Explain why the acceleration of the left mass equals negative the average of the accelerations of the right two masses.
Relevant Equations: Conservation of string

I'm not quite sure how to apply conservation of string to this problem, so guidance would be appreciated. Normally as long as there isn't a "sub-pulley" I can do the problem fairly easily but this one tricks me up. Thanks
Relative to the bottom pulley, the average acceleration of the bottom two masses is zero. The acceleration of the upper mass is minus the acceleration of the bottom pulley.
 
  • Like
Likes   Reactions: jbriggs444
Chestermiller said:
Relative to the bottom pulley, the average acceleration of the bottom two masses is zero. The acceleration of the upper mass is minus the acceleration of the bottom pulley.
My impression is that the OP has been instructed to use conservation of string length to obtain the result. That suggests to me applying your framework to positions and then differentiating.
 
  • Like
Likes   Reactions: Chestermiller

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K