kith:
Well, then we agree, because that's exactly what I'm trying to say. Without intermediate collapse, it is impossible to compute such joint and conditional probabilities and hence QM without collapse doesn't work. With collapse, you can compute the joint probability also in this setting. (Wigner can just ask his friend at ##t=t_1## and collapse his wave function)
Maybe you will now introduce some further observer who observes Wigner. My response would be: Let observer ##i+1## ask observer ##i## what they measured at time ##t_1##. Then let observer ##i## forget their result before ##t_2##. So you get an infinite chain of observers who must collapse their wave functions, yet there is no hypothetical full system which accurately describes the system without collapse. (Of course, this scenario is pathological, but as a gedankenexperiment, it shows that there is a conceptual problem if you drop the collapse axiom without replacement.)PeterDonis:
That's not what I meant by information. When we talk about apparent collapse, some variable needs to become and remain almost classical if we want to perform the collapse at the end of the calculation. That's what I meant by "newly gained information." It's called deferred measurement. But you can't make all observables almost classical.
I agree that unitary evolution can be inverted and we can use this to compute the joint probability I asked for. But in order to do that, you will end up with an expression again, where you inserted a ##\chi## inbetween two unitary evolutions: First you evolve back, then you insert ##\chi## and then you evolve forward again. So again, you end up with a projection at an intermediate time.