MHB Constraint optimization without using Calculus

Dustinsfl
Messages
2,217
Reaction score
5
A student in hs I tutor was giving the following problem:

Maximizes the volume of a cylinder inscribe in a sphere of radius 6.

We worked through it and had:
\begin{align}
h &= 2(6 - x)\\
r_{\text{cylinder}}^2 &= x(12 - x)
\end{align}
Now the volume of a right cylinder is \(V = \pi r^2h\) so
\[
V = 2\pi x(12 - x)(6 - x).
\]
Since this is a cubic of the form \(x^3\) and not \(-x^3\), we know that the maximum occurs when \(x\in(0, 6)\).

How are we supposed to find this value of x without Calculus? I ended up taking the derivative to determine it and it was something like \(x = 2.57\).
 
Mathematics news on Phys.org
I would take $h$ as the variable rather than $x$. You want to maximise $V = \pi r^2h$ subject to the condition $r^2 + \bigl(\frac h2\bigr)^2 = 6^2$, as you can see from Pythagoras' theorem in the circle formed by a cross-section of the sphere through its centre. So you want to maximise $\pi h\Bigl(36 - \dfrac{h^2}4\Bigr)$. The derivative vanishes when $h = 4\sqrt3$, giving $V = 48\sqrt3\pi$. But I don't see how that could be done without calculus.
 
Opalg said:
I would take $h$ as the variable rather than $x$. You want to maximise $V = \pi r^2h$ subject to the condition $r^2 + \bigl(\frac h2\bigr)^2 = 6^2$, as you can see from Pythagoras' theorem in the circle formed by a cross-section of the sphere through its centre. So you want to maximise $\pi h\Bigl(36 - \dfrac{h^2}4\Bigr)$. The derivative vanishes when $h = 4\sqrt3$, giving $V = 48\sqrt3\pi$. But I don't see how that could be done without calculus.

You could always do a plot using a graphing calculator and read off the point of the maximum. It's not an exact method, but it's probably enough if it's to be done without calculus.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top