Constructive Interference from Speakers on an x-axis

AI Thread Summary
The maximum amplitude produced from the speakers is calculated to be 12.86 Pa. The user initially struggled with setting up the expression to find the distance to move one speaker, questioning whether to solve for phase difference. Clarification was requested from other forum members, emphasizing the need for an attempt to adhere to forum rules. After further work, the user successfully arrived at the correct answer, realizing the mistake was in converting degrees to radians for the phase calculation. This highlights the importance of careful unit conversion in wave interference problems.
ab200
Messages
13
Reaction score
3
Homework Statement
Two speakers, A and B, are at the same point on an x-axis and each emits sound with a wavelength of 0.25 m. Speaker B's phase constant is 260 degrees larger than speaker A's phase constant and each produces an amplitude of 10 Pa.

What is the minimum distance you can move speaker A to achieve constructive interference along the x-axis? Give a positive answer regardless of direction, in m.
Relevant Equations
ΔΦ/2π = Δx/λ + ΔΦo/2π = m , m = 0,1,2,3...
The first part of this question asks for the maximum amplitude produced, which I found to be 12.86 Pa. I was able to set up the expression for the combined wave equations.

However, I am struggling to understand how to set up and solve an expression to find the distance I could move one of the speakers. I have wavelength, frequency, and amplitude, as well as difference in phase constant. Am I solving for phase difference?
 
Physics news on Phys.org
ab200 said:
Am I solving for phase difference?
It's not entirely clear what you mean by that. Please post an attempt based on that approach. An attempt is required by forum rules anyway, and it will clarify what you have in mind.
 
haruspex said:
It's not entirely clear what you mean by that. Please post an attempt based on that approach. An attempt is required by forum rules anyway, and it will clarify what you have in mind.
I apologize — after working on it again I arrived at the correct answer. I’m not entirely sure what I did the first time, but I suspect I didn’t convert degrees into radians when calculating difference in initial phase.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top