- #1
- 367
- 0
Don't really know how to think about these...
(1) Give an example of a 1-dimensional ODE of form x' = f(x), x(0)=x* where f: R->R is continuous but there exists more than one differentiable solution. Prove your assertion.
(2) Is it true that a 1-dimensional ODE of the same form as (1) where f(x) is differentiable in x for all x has a differential solution x(t) defined for all t>0? Why?
(1) Give an example of a 1-dimensional ODE of form x' = f(x), x(0)=x* where f: R->R is continuous but there exists more than one differentiable solution. Prove your assertion.
(2) Is it true that a 1-dimensional ODE of the same form as (1) where f(x) is differentiable in x for all x has a differential solution x(t) defined for all t>0? Why?