MHB Continuous Except Jump Discontinuity: Showing True for Any Function

Dustinsfl
Messages
2,217
Reaction score
5
Show that a function on (a,b) that is continuous except for a jump discontinuity at $x_0\in(a,b)$ is of the form
$$
f(x) = g(x) + cH(x - x_0)
$$
where c is a constant and g is continuous on (a,b) except possibly for a removable discontinuity at $x_0$.

I know that is true since this how I construct those functions but not sure how to show it is true for any arbitrary function.
 
Physics news on Phys.org
dwsmith said:
Show that a function on (a,b) that is continuous except for a jump discontinuity at $x_0\in(a,b)$ is of the form
$$
f(x) = g(x) + cH(x - x_0)
$$
where c is a constant and g is continuous on (a,b) except possibly for a removable discontinuity at $x_0$.

I know that is true since this how I construct those functions but not sure how to show it is true for any arbitrary function.

Well, it's not any ol' arbitrary function. It's continuous except for one jump discontinuity. I think you could definitely say that
$$c= \lim_{x \to x_{0}^{+}}f(x)- \lim_{x \to x_{0}^{-}}f(x).$$
So, suppose you define $c$ this way, and then let
$$g(x) := f(x)-c H(x-x_{0}).$$
You must then prove that $g$ is continuous on $(a,b)$ except possibly at $x_{0}$. If you could do that, I think you'd be done, right?
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
4K
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K