Continuous mapping and fixed point

Click For Summary
SUMMARY

The discussion centers on the properties of continuous mappings in complete metric spaces, specifically addressing the fixed point theorem. It establishes that if \( T \) is a continuous mapping of a complete metric space \( X \) and \( T^k \) is a contraction mapping for some positive integer \( k \), then \( T \) possesses a unique fixed point in \( X \). The proof involves limits and the commutative property of powers of \( T \), demonstrating that \( u = T u \) holds true, where \( u \) is the unique fixed point.

PREREQUISITES
  • Understanding of complete metric spaces
  • Knowledge of contraction mappings
  • Familiarity with fixed point theorems
  • Basic concepts of limits and continuity in mathematical analysis
NEXT STEPS
  • Study the Banach Fixed-Point Theorem in detail
  • Explore the properties of contraction mappings in metric spaces
  • Learn about the implications of continuity in mappings
  • Investigate the concept of composite functions and their properties
USEFUL FOR

Mathematicians, students of analysis, and researchers interested in fixed point theory and its applications in various fields such as topology and functional analysis.

ozkan12
Messages
145
Reaction score
0
Let $T$ be a continuous mapping of a complete metric space $X$ into itself such that ${T}^{k}$ is a contraction mapping of $X$ for some positive integer $k$. Then $T$ has a unique fixed point in $X$.

Proof:

${T}^{k}$ has a unique fixed point $u$ in $X$ and $u=\lim_{{n}\to{\infty}}\left({T}^{k}\right)^n{x}_{0}$ ${x}_{0}\in X$ arbitrary.

Also $\lim_{{n}\to{\infty}}\left({T}^{k}\right)^nT{x}_{0}=u$. Hence

$u=\lim_{{n}\to{\infty}}({T}^{k})^nT{x}_{0}$=$\lim_{{n}\to{\infty}}T\left({T}^{k}\right)^n{x}_{0}$ (2)
=$T\lim_{{n}\to{\infty}}\left({T}^{k}\right)^n{x}_{0}$
=$Tu$.İn this proof, I didnt understand, How (2) happened ? Please, can you explain ? Thank you for your attention...Best wishes...
 
Physics news on Phys.org
ozkan12 said:
Let $T$ be a continuous mapping of a complete metric space $X$ into itself such that ${T}^{k}$ is a contraction mapping of $X$ for some positive integer $k$. Then $T$ has a unique fixed point in $X$.

Proof:

${T}^{k}$ has a unique fixed point $u$ in $X$ and $u=\lim_{{n}\to{\infty}}\left({T}^{k}\right)^n{x}_{0}$ ${x}_{0}\in X$ arbitrary.

Also $\lim_{{n}\to{\infty}}\left({T}^{k}\right)^nT{x}_{0}=u$. Hence

$u=\lim_{{n}\to{\infty}}({T}^{k})^nT{x}_{0}$=$\lim_{{n}\to{\infty}}T\left({T}^{k}\right)^n{x}_{0}$ (2)
=$T\lim_{{n}\to{\infty}}\left({T}^{k}\right)^n{x}_{0}$
=$Tu$.İn this proof, I didnt understand, How (2) happened ? Please, can you explain ? Thank you for your attention...Best wishes...
Since $T^k$ is a contraction map, $\lim_{{n}\to{\infty}}\left({T}^{k}\right)^ny = u$ for any $y\in X$. In particular, this holds for $y=Tx_0$, so that $\lim_{{n}\to{\infty}}\left({T}^{k}\right)^nT{x}_{0}=u$. But powers of $T$ commute with each other, so $\left({T}^{k}\right)^nT = T\left({T}^{k}\right)^n$. Therefore $u = \lim_{{n}\to{\infty}}T\left({T}^{k}\right)^n{x}_{0}$, as claimed in (2).
 
Dear professor,

Firstly, Thank you so much...But why powers of T is commute each other ?
 
Opalg said:
Since $T^k$ is a contraction map, $\lim_{{n}\to{\infty}}\left({T}^{k}\right)^ny = u$ for any $y\in X$. In particular, this holds for $y=Tx_0$, so that $\lim_{{n}\to{\infty}}\left({T}^{k}\right)^nT{x}_{0}=u$. But powers of $T$ commute with each other, so $\left({T}^{k}\right)^nT = T\left({T}^{k}\right)^n$. Therefore $u = \lim_{{n}\to{\infty}}T\left({T}^{k}\right)^n{x}_{0}$, as claimed in (2).

ozkan12 said:
But why powers of T is commute each other ?
Index laws: $\left({T}^{k}\right)^nT = T^{kn+1} = t^{1+kn} = T\left({T}^{k}\right)^n$.
 
Dear professor,

İn there $({T}^{k})$ is composite function, isn't it ? That is, İn my opinion, we don't get exponentiate
 
Last edited:
In this context, $T^k y=\underbrace{TTT\dots T}_{k \, \text{times}}y,$ so that $T^k$ is shorthand for "compose $T$ with itself $k$ times". So, you are correct.
 
ozkan12 said:
İn there $({T}^{k})$ is composite function, isn't it ? That is, İn my opinion, we don't get exponentiate
The operation of composition is associative, and therefore obeys the index laws.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K