MHB Contraction Map: Proving $f(x)$ is a Contraction

  • Thread starter Thread starter onie mti
  • Start date Start date
  • Tags Tags
    Contraction Map
onie mti
Messages
42
Reaction score
0
I am given this function

$f(x)=\langle (1/9) \cos(x_1+ \sin(x_2)) , (1/6) \arctan(x_1+ x_2) \rangle$

where $x_1= \langle 0,-1 \rangle$.

may I please get hints on how to prove that this function is a contraction map
 
Last edited by a moderator:
Physics news on Phys.org
?Hint: To prove that $f$ is a contraction map, you need to show that it satisfies the following property: for all $x,y \in X$, there exists some constant $k \in [0,1)$ such that $\|f(x)-f(y)\| \leq k\|x-y\|$. In other words, the distance between the images of two points must be less than or equal to $k$ times the distance between the two original points.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
687
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 22 ·
Replies
22
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K