I Contradiction in formula for motional EMF

AI Thread Summary
The discussion centers on the application of the motional EMF formula to a rotating disk, revealing a sign contradiction in the calculations. The expressions derived for the motional EMF yield opposite signs when integrating the velocity cross magnetic field and when applying the double integral approach. The source of confusion is identified as the orientation of the area element, where the downward orientation of the area should be considered for a counterclockwise rotation. This oversight leads to the realization that the sign discrepancy arises from the incorrect assumption about the area element's orientation. Ultimately, correcting the orientation resolves the contradiction in the calculations.
masteralien
Messages
36
Reaction score
2
TL;DR Summary
There seems to be a contradiction in the sign of the motional EMF for a spinning disk depending in the formula used
The formula for motional EMF is
$$\oint({\bf{v}}\times{\bf{B}})d{\bf{l}}=-\frac{d}{dt}\int{{\bf{B}}\cdot{\bf{\hat{n}}}da}$$However applying this for a rotating disk of radius a there seems to be a sign contradiction
$${\bf{v}}\times{\bf{B}}=\omega s{\bf{\hat{\varphi}}}\times B{\bf{\hat{z}}}=B\omega s {\bf{\hat{s}}}$$

$$\int^{a}_0{B\omega s}ds=\frac{1}{2}B\omega a^2$$Now doing it with the Double Integral by moving the derivative inside
$$
-\frac{d}{dt}\int^{2\pi}_0\int^{a}_0{Bsdsd\varphi}$$

$$\\\frac{d\varphi}{dt}=\omega$$

$$\\-\int^{a}_0{B\omega sds}=-\frac{1}{2}B\omega a^2$$

These expressions are similar but have the opposite sign why is this.

My question is why is there this contradiction here did I do something wrong like these formulas should be the same.
 
Last edited:
Physics news on Phys.org
I take your OP illustrated in https://www.feynmanlectures.caltech.edu/II_17.html as 

1702169651553.png


Where is the area a or da of your RHS in this figure ?
 
Last edited:
anuttarasammyak said:
I take your OP illustrated in https://www.feynmanlectures.caltech.edu/II_17.html as 

View attachment 336999

Where is the area a or da of your RHS in this figure ?
Ur right if the disk rotates counterclockwise da should be negative as the curve which goes around the Area should have a downward orientation should have caught that.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top