Convergence of a series given in non-closed form

Click For Summary
The series under discussion is given in a non-closed form, and the analysis focuses on determining its convergence. The terms of the series are expressed as a ratio of products, leading to the conclusion that the sequence of terms is ultimately increasing for n greater than 2. This implies that the limit of the terms approaches infinity as n approaches infinity. Consequently, by the Test for Divergence, the series is determined to be divergent. The final conclusion is that the series does not converge absolutely or conditionally.
Entertainment Unit
Messages
16
Reaction score
1

Homework Statement


Determine whether the given series is absolutely convergent, conditionally convergent, or divergent.

##\frac{1}{3} + \frac{1 \cdot 4}{3 \cdot 5} + \frac{1 \cdot 4 \cdot 7}{3 \cdot 5 \cdot 7} + \frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 5 \cdot 7 \cdot 9} + \ldots + \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)} + \ldots##

Homework Equations


None that I'm aware.

The Attempt at a Solution


Before I can apply any of the convergence tests, I need a closed-form expression.

##a_n = \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)}##

##= \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)}##

##= \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)(4 \cdot 6 \cdot \ldots \cdot 2n)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot \ldots \cdot 2n(2n + 1)}##

##= \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)2(2 \cdot 3 \cdot \ldots \cdot n)}{(2n + 1)!}##

##= \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)2n!}{(2n + 1)!}##

##= \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)4n!}{(2n + 1)!}##

and then I'm not sure where to go.
 
Physics news on Phys.org
You don't need to do much calculation in this. Just work out whether the terms are ultimately increasing or decreasing. If they are not decreasing then the series must be divergent, since they are all positive. To prove that, just find the smallest term, and use the fact that all terms are at least as great as that.
 
  • Like
Likes Entertainment Unit and SammyS
Thanks, here's what wound up with:

It is given that ##a_n = \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)}##

##\implies a_{n + 1} = \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)(3n + 1)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)(2n + 3)}##

Suppose ##a_n \lt a_{n + 1}##

##\frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)} \lt \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n - 2)(3n + 1)}{3 \cdot 5 \cdot 7 \cdot \ldots \cdot (2n + 1)(2n + 3)}##

##1 \lt \frac{3n+1}{2n + 3}##

##n \gt 2##

which means our supposition that ##a_n \lt a_{n+1}## is correct for ##n > N = 2 \implies \lim_{n\to\infty} a_n = \infty \implies## the given series is divergent by the Test For Divergence.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
3K
Replies
5
Views
3K
Replies
3
Views
2K