courtrigrad
- 1,236
- 2
\sum_{n=1}^{\infty} \arctan(n+1)-\arctan(n).
So we want to take \lim s_{n} = \lim_{n\rightarrow \infty} (\arctan 2-\arctan 1)+(\arctan 3-\arctan 2) + ... + (\arctan(n+1)-\arctan n). From this I can see all of the terms cancel except \arctan 1. But then how do we get: \lim_{n\rightarrow \infty} \arctan(n+1)-\arctan 1? Wouldn't the \arctan(n+1) cancel out?
Thanks
So we want to take \lim s_{n} = \lim_{n\rightarrow \infty} (\arctan 2-\arctan 1)+(\arctan 3-\arctan 2) + ... + (\arctan(n+1)-\arctan n). From this I can see all of the terms cancel except \arctan 1. But then how do we get: \lim_{n\rightarrow \infty} \arctan(n+1)-\arctan 1? Wouldn't the \arctan(n+1) cancel out?
Thanks