MHB Converging Subsequences: Finding a Sequence for All Integers

  • Thread starter Thread starter Carla1985
  • Start date Start date
  • Tags Tags
    Sequences
Carla1985
Messages
91
Reaction score
0
I'm trying to find a sequence that has subsequences that converge to every integer. The question before that was the same but just for the positive integers, for which i gave {1,1,2,1,2,3...} but I'm struggling to include the negatives. Thanks
 
Physics news on Phys.org
Carla1985 said:
I'm trying to find a sequence that has subsequences that converge to every integer. The question before that was the same but just for the positive integers, for which i gave {1,1,2,1,2,3...} but I'm struggling to include the negatives. Thanks

Choose for example $$0,-1,0,1,-2,-1,0,1,2,-3,-2,-1,0,1,2,3,\ldots$$ and so on. Notice that every integer appears infinitely many times: we can choose a subsequence that converges to a given integer. Besides, that subsequence is constant.
 
That's fab, thank you! :)
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 15 ·
Replies
15
Views
1K
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
5K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
15
Views
2K