- #1
frensel
- 20
- 0
Homework Statement
How to convert
[itex]\tan(x)\sin(\frac{x}{2})+\cos(\frac{x}{2})[/itex]
to
[itex]\frac{\tan(x)}{\sqrt{2(1-\cos(x))}}[/itex]
Homework Equations
The Attempt at a Solution
I can convert it to this form: [itex]\frac{\cos(\frac{x}{2})}{\cos(x)}[/itex]
[itex]\tan(x)\sin(\frac{x}{2})+\cos(\frac{x}{2})[/itex]
=[itex]\frac{\sin(x)}{\cos(x)}\sin(\frac{x}{2})+ \cos(\frac{x}{2})[/itex]
=[itex]\frac{1}{\cos(x)}\left(\sin(x)\sin(\frac{x}{2})+ \cos(x)\cos(\frac{x}{2})\right)[/itex]
using angle sum and difference identities, we get
[itex]\left(\sin(x)\sin(\frac{x}{2})+ \cos(x)\cos(\frac{x}{2})\right) = \cos(x - \frac{x}{2}) = \cos(\frac{x}{2})[/itex]
therefore, we have
[itex]\tan(x)\sin(\frac{x}{2})+\cos(\frac{x}{2}) = \frac{\cos(\frac{x}{2})}{\cos(x)}[/itex]