MHB Converting from Cartesian to polar form

nacho-man
Messages
166
Reaction score
0
another question:

convert $|\frac{1-i}{3}|$ to polar form

i am getting $\frac{\sqrt{2}}{3} e^{\frac{i\pi}{4}}$

but the solutions say:
$e^{\frac{-i\pi}{4}}$

i did
$ x = r\cos(\theta)$ and $y=r\sin(\theta)$
so

$\frac{1}{3} = {\frac{\sqrt{2}}{3}}\cos(\theta)$
$\frac{1}{3} = \cos(\theta)$
And thus $\theta = \frac{\pi}{4}$
similarly, the same was determined for $\sin(\theta)$

What did I do wrong, why didn't i obtain a negative?
Also, is there a shorter method to find the ans? I would love if someone could give me a fully worked solution with the most efficient way to get the answer.

THanks.
 
Mathematics news on Phys.org
nacho said:
another question:

convert $|\frac{1-i}{3}|$ to polar form

The absolute value in complex analysis represents the modulus so the result will be a positive real number.
 
nacho said:
another question:

convert $|\frac{1-i}{3}|$ to polar form

i am getting $\frac{\sqrt{2}}{3} e^{\frac{i\pi}{4}}$

but the solutions say:
$e^{\frac{-i\pi}{4}}$

i did
$ x = r\cos(\theta)$ and $y=r\sin(\theta)$
so

$\frac{1}{3} = {\frac{\sqrt{2}}{3}}\cos(\theta)$
$\frac{1}{3} = \cos(\theta)$ This is wrong: $\color{red}{\cos\theta}$ should be $\color{red}{1/\sqrt2}$.
And thus $\theta = \color{red}{\pm}\frac{\pi}{4}$
similarly, the same was determined for $\sin(\theta)$

What did I do wrong, why didn't i obtain a negative?
Also, is there a shorter method to find the ans? I would love if someone could give me a fully worked solution with the most efficient way to get the answer.

THanks.
[I assume the mod signs should not be there, otherwise as ZaidAlyafey says the result should be a positive real number and $\theta$ will be zero.]

When converting to polar form, you should always check which quadrant the number lies in. In this case, $1-i$ is in the fourth quadrant, so $\cos\theta$ will be positive but $\sin\theta$ will be negative. This means that you should choose the negative value for $\theta$.
 
Sorry, both typos

The absolute value shouldn't have been there, and I had the correct workings but transcribed them onto here incorrectly!

Thanks for the note about the $1+i$ lying in the 4th quadrant,
I never looked at it the correct way from the beginning! This has been my flaw up until now.

Thank you !
 
nacho said:
Thanks for the note about the $1+i$ lying in the 4th quadrant,
just to make sure you mean that $$1-i$$ lying in the 4th quadrant cause $$1+i$$ lying in the first quadrant:P

Regards,
$$|\pi\rangle$$
 
Petrus said:
just to make sure you mean that $$1-i$$ lying in the 4th quadrant cause $$1+i$$ lying in the first quadrant:P

Regards,
$$|\pi\rangle$$

thanks for the concern
I seem to be making typos all over the place! :P that's what I meant.

I didn't understand at first you could look at the points these way.

for instance, $1-i$ is referring to a coordinate, correct?

Yet whenever I think of coordinates, I think only in terms of $(1,-i)$ notation
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top