Converting Summation Notation to Closed Form for Linear-Geometric Series

  • Context: MHB 
  • Thread starter Thread starter JimmyK
  • Start date Start date
  • Tags Tags
    Notation Summation
Click For Summary
SUMMARY

The discussion focuses on converting the summation notation of a Linear-Geometric Series into a closed form. The original summation is expressed as $$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}$$, which simplifies to $$\sum\limits_{i=2}^n ix^{n-i}$$. Participants explore the expansion of the series and derive that $$\sum\limits_{i=2}^n \frac{i}{x^i}$$ can be expressed as a combination of geometric series. The final closed form for the series, assuming the lower bound is 1, is $$\frac{-(n+1)(\frac{1}{x})^{n+1}+n(\frac{1}{x})^{n+2}+x}{(x-1)^{2}}$$, with further inquiry into adjustments needed for a lower bound of 2.

PREREQUISITES
  • Understanding of summation notation and series
  • Familiarity with geometric series and their properties
  • Knowledge of algebraic manipulation and simplification techniques
  • Basic calculus concepts related to series convergence
NEXT STEPS
  • Study the derivation of closed forms for geometric series
  • Learn about the properties of Linear-Geometric Series
  • Explore the application of generating functions in series analysis
  • Investigate the impact of changing lower bounds in summation notation
USEFUL FOR

Mathematicians, educators, students in advanced mathematics, and anyone interested in series convergence and summation techniques.

JimmyK
Messages
7
Reaction score
0
I have the following summation and I'm attempting to remove the summation notation. It appears to be the sum of a geometric series but I'm having a great deal of trouble with it. X is an unknown constant.

$$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}$$

Thanks.
 
Physics news on Phys.org
Do you know how to expand the summation out? If so do it for the first 3 or 4 terms, what do you get?
 
marobin said:
I have the following summation and I'm attempting to remove the summation notation. It appears to be the sum of a geometric series but I'm having a great deal of trouble with it. X is an unknown constant.
$$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}$$
Well it reduces to $\sum\limits_{i=2}^n (i)x^{n-i}=2x^{n-2}+3x^{n-3}\cdots+(n-1)x+n$
But that is not very much help.
 
Thank you for expanding out the first few terms. I am try to find a general formula for it instead of using the summation notation.
 
marobin said:
I have the following summation and I'm attempting to remove the summation notation. It appears to be the sum of a geometric series but I'm having a great deal of trouble with it. X is an unknown constant.

$$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}$$

Thanks.
$$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}=\sum\limits_{i=2}^n ix^{n-i}=x^n\sum\limits_{i=2}^n \frac{i}{x^i}$$$$\sum\limits_{i=2}^n \frac{i}{x^i}=2(\frac{1}{x^2}+\frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+...+\frac{1}{x^n})$$

$$+(\frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+...+\frac{1}{x^n})+(\frac{1}{x^4}+\frac{1}{x^5}+\frac{1}{x^6}+...+\frac{1}{x^n})+...+\frac{1}{x^n}$$Could you proceed?
 
Last edited:
Thank you so much. I understand a bit more now, I guess I'm still a bit confused about

$$\sum\limits_{i=2}^n \frac{i}{x^i}=2(\frac{1}{x^2}+\frac{1}{x^3}+\frac{ 1}{x^4}+\frac{1}{x^5}+...+\frac{1}{x^n})+(\frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+...+ \frac{1}{x^n})+(\frac{1}{x^4}+\frac{1}{x^5}+\frac{ 1}{x^6}+...+\frac{1}{x^n})+...+\frac{1}{x^n}$$

in terms of why only the first set of summations is multiplied by 2. Sorry, I'm very rusty on the rules of summation.
 
marobin said:
Thank you so much. I understand a bit more now, I guess I'm still a bit confused about

$$\sum\limits_{i=2}^n \frac{i}{x^i}=2(\frac{1}{x^2}+\frac{1}{x^3}+\frac{ 1}{x^4}+\frac{1}{x^5}+...+\frac{1}{x^n})+(\frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+...+ \frac{1}{x^n})+(\frac{1}{x^4}+\frac{1}{x^5}+\frac{ 1}{x^6}+...+\frac{1}{x^n})+...+\frac{1}{x^n}$$

in terms of why only the first set of summations is multiplied by 2. Sorry, I'm very rusty on the rules of summation.
I'm little late to work, so just try to answer my question:

What is $$\sum\limits_{i=2}^n \frac{i}{x^i}$$ ?

$$\sum\limits_{i=2}^n \frac{i}{x^i}=\frac{2}{x^2}+\frac{3}{x^3}+\frac{4}{x^4}+...+\frac{n}{x^n}$$

Yes?

So, why then the above equals to what I wrote in my previous post? Good-luck! :)
 
Ah, I see that now. Thank you. So now I understand the common ratio in each distinct set is 1/x so I'm now working on trying to get the proper equation. :)
 
Here is another method (which you may find easy).

Let $\displaystyle S_n=\sum_{i=2}^{n}\frac{i}{x^n}=\frac{2}{x^2}+ \frac{3}{x^3}+\cdots \frac{n}{x^n} \quad (1)$

Multiply both sides by $\frac{1}{x}$:

$\displaystyle \frac{S_n}{x}=\sum_{i=2}^{n}\frac{i}{x^{i+1}}= \frac{2}{x^3}+\frac{3}{x^4}+\cdots \frac{n}{x^{n+1}} \quad (2)$

Subtract (2) from (1):

$$ S_n \left( 1-\frac{1}{x}\right)=\frac{2}{x^2}+ \left( \frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+\cdots \frac{1}{x^n}\right)-\frac{n}{x^{n+1}}$$

Can you proceed?
 
  • #10
So it seems like this is a Linear-Geometric Series.

By applying the formula and if the lower bound was 1 instead of 2, I believe its closed form would be: $$\frac{-(n+1)(\frac{1}{x})^{n+1}+n(\frac{1}{x})^{n+2}+x}{(x-1)^{2}}$$

I wanted to make sure I'm taking the correct approach before attempting to see how the formula would change when taking into account that the lower bound is 2 and not 1.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 37 ·
2
Replies
37
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K