Converting Summation Notation to Closed Form for Linear-Geometric Series

  • Context: MHB 
  • Thread starter Thread starter JimmyK
  • Start date Start date
  • Tags Tags
    Notation Summation
Click For Summary

Discussion Overview

The discussion revolves around converting a summation notation for a linear-geometric series into a closed form. Participants explore the structure of the summation, attempt to expand it, and seek a general formula without the summation notation. The conversation includes technical reasoning and mathematical manipulation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the summation $$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}$$ and expresses difficulty in simplifying it.
  • Another participant suggests expanding the summation for the first few terms to gain insight.
  • A participant reduces the summation to $$\sum\limits_{i=2}^n (i)x^{n-i}$$ but finds this unhelpful for deriving a closed form.
  • There is an exploration of the expression $$\sum\limits_{i=2}^n \frac{i}{x^i}$$ and its breakdown into multiple series, with one participant questioning the reasoning behind the coefficients in the expansion.
  • Another participant proposes a method involving multiplying the summation by $$\frac{1}{x}$$ and subtracting to derive a new equation.
  • A later post identifies the series as a Linear-Geometric Series and suggests a closed form based on a modified lower bound.

Areas of Agreement / Disagreement

Participants express varying levels of understanding and approaches to the problem, with no consensus reached on a definitive closed form or method. Multiple perspectives on the manipulation of the series are presented, indicating ongoing exploration and debate.

Contextual Notes

Participants note confusion regarding the rules of summation and the implications of changing the lower bound of the series, highlighting the complexity of deriving a closed form.

JimmyK
Messages
7
Reaction score
0
I have the following summation and I'm attempting to remove the summation notation. It appears to be the sum of a geometric series but I'm having a great deal of trouble with it. X is an unknown constant.

$$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}$$

Thanks.
 
Physics news on Phys.org
Do you know how to expand the summation out? If so do it for the first 3 or 4 terms, what do you get?
 
marobin said:
I have the following summation and I'm attempting to remove the summation notation. It appears to be the sum of a geometric series but I'm having a great deal of trouble with it. X is an unknown constant.
$$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}$$
Well it reduces to $\sum\limits_{i=2}^n (i)x^{n-i}=2x^{n-2}+3x^{n-3}\cdots+(n-1)x+n$
But that is not very much help.
 
Thank you for expanding out the first few terms. I am try to find a general formula for it instead of using the summation notation.
 
marobin said:
I have the following summation and I'm attempting to remove the summation notation. It appears to be the sum of a geometric series but I'm having a great deal of trouble with it. X is an unknown constant.

$$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}$$

Thanks.
$$\sum\limits_{i=2}^n (n - (n-i))x^{n-i}=\sum\limits_{i=2}^n ix^{n-i}=x^n\sum\limits_{i=2}^n \frac{i}{x^i}$$$$\sum\limits_{i=2}^n \frac{i}{x^i}=2(\frac{1}{x^2}+\frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+...+\frac{1}{x^n})$$

$$+(\frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+...+\frac{1}{x^n})+(\frac{1}{x^4}+\frac{1}{x^5}+\frac{1}{x^6}+...+\frac{1}{x^n})+...+\frac{1}{x^n}$$Could you proceed?
 
Last edited:
Thank you so much. I understand a bit more now, I guess I'm still a bit confused about

$$\sum\limits_{i=2}^n \frac{i}{x^i}=2(\frac{1}{x^2}+\frac{1}{x^3}+\frac{ 1}{x^4}+\frac{1}{x^5}+...+\frac{1}{x^n})+(\frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+...+ \frac{1}{x^n})+(\frac{1}{x^4}+\frac{1}{x^5}+\frac{ 1}{x^6}+...+\frac{1}{x^n})+...+\frac{1}{x^n}$$

in terms of why only the first set of summations is multiplied by 2. Sorry, I'm very rusty on the rules of summation.
 
marobin said:
Thank you so much. I understand a bit more now, I guess I'm still a bit confused about

$$\sum\limits_{i=2}^n \frac{i}{x^i}=2(\frac{1}{x^2}+\frac{1}{x^3}+\frac{ 1}{x^4}+\frac{1}{x^5}+...+\frac{1}{x^n})+(\frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+...+ \frac{1}{x^n})+(\frac{1}{x^4}+\frac{1}{x^5}+\frac{ 1}{x^6}+...+\frac{1}{x^n})+...+\frac{1}{x^n}$$

in terms of why only the first set of summations is multiplied by 2. Sorry, I'm very rusty on the rules of summation.
I'm little late to work, so just try to answer my question:

What is $$\sum\limits_{i=2}^n \frac{i}{x^i}$$ ?

$$\sum\limits_{i=2}^n \frac{i}{x^i}=\frac{2}{x^2}+\frac{3}{x^3}+\frac{4}{x^4}+...+\frac{n}{x^n}$$

Yes?

So, why then the above equals to what I wrote in my previous post? Good-luck! :)
 
Ah, I see that now. Thank you. So now I understand the common ratio in each distinct set is 1/x so I'm now working on trying to get the proper equation. :)
 
Here is another method (which you may find easy).

Let $\displaystyle S_n=\sum_{i=2}^{n}\frac{i}{x^n}=\frac{2}{x^2}+ \frac{3}{x^3}+\cdots \frac{n}{x^n} \quad (1)$

Multiply both sides by $\frac{1}{x}$:

$\displaystyle \frac{S_n}{x}=\sum_{i=2}^{n}\frac{i}{x^{i+1}}= \frac{2}{x^3}+\frac{3}{x^4}+\cdots \frac{n}{x^{n+1}} \quad (2)$

Subtract (2) from (1):

$$ S_n \left( 1-\frac{1}{x}\right)=\frac{2}{x^2}+ \left( \frac{1}{x^3}+\frac{1}{x^4}+\frac{1}{x^5}+\cdots \frac{1}{x^n}\right)-\frac{n}{x^{n+1}}$$

Can you proceed?
 
  • #10
So it seems like this is a Linear-Geometric Series.

By applying the formula and if the lower bound was 1 instead of 2, I believe its closed form would be: $$\frac{-(n+1)(\frac{1}{x})^{n+1}+n(\frac{1}{x})^{n+2}+x}{(x-1)^{2}}$$

I wanted to make sure I'm taking the correct approach before attempting to see how the formula would change when taking into account that the lower bound is 2 and not 1.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K