Coordinate transformation for isotropy

Click For Summary

Discussion Overview

The discussion revolves around the mathematical treatment of coordinate transformations in the context of isotropy and non-isotropy in physics. Participants explore the implications of transforming coordinates on the equations of motion for a ball dropped from a height, examining whether such transformations can lead to conclusions about the isotropy of space.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes a method to detect non-isotropy by transforming coordinates and analyzing the resulting equations of motion.
  • Another participant challenges the assertion that the transformed equations suggest isotropy, pointing out that the acceleration in the transformed frame is not zero.
  • There is a discussion about whether to apply the derivative with respect to the original or transformed coordinates when substituting variables in the equations of motion.
  • Participants consider the implications of the rotation of coordinates on the second equations of motion and how to derive them correctly in the transformed frame.
  • One participant arrives at an expression for the second equation of motion in the transformed frame and seeks validation from others regarding its correctness.

Areas of Agreement / Disagreement

Participants express differing views on the implications of the coordinate transformations for isotropy. While some agree on the correctness of the derived equations, there is no consensus on the broader implications regarding isotropy and the treatment of derivatives in the context of the transformations.

Contextual Notes

Participants note the complexity of transforming equations of motion and the need to carefully consider how derivatives are affected by coordinate changes. There are unresolved questions regarding the treatment of certain terms and the implications of the transformations on the physical interpretation of the results.

gionole
Messages
281
Reaction score
24
The following question struck me by accident.

Would appreciate to let me know the flaw in my logic, no need to deviate from this approach.

We know that on small-scale, experiment such as dropping ball from some height to the earth tells us that space is non-isotropic, because of preferred direction. I was trying to mathematically detect non-isotropy of such case. Here is how.

Experiment 1:

in ##x, y## frame, we have: ##m\ddot y = -\frac{d}{dy}(mgy)## by which we get: ##\ddot y = -g##.

Experiment 2:

We rotate our own coordinate system, while everything stays in place. Some call this passive transformation. The rotation matrix is given by:

##y = x'sin\theta + y'cos\theta##
##x = x'cos\theta - y'sin\theta##

Since ##y = x'sin\theta + y'cos\theta## and earth stays the same place, potential energy of the ball doesn't really change, so we can replace ##y## by ##x'sin\theta + y'cos\theta## in the ##m\ddot y = -\frac{d}{dy}(mgy)## to get equation of motion in ##x', y'## frame.

##m\frac{d^2}{dt^2}(x'sin\theta + y'cos\theta) = -\frac{d}{dy'}(mg(x'sin\theta + y'cos\theta))##

##\ddot x'sin\theta + \ddot y'cos\theta = -gcos\theta##

##\ddot x'sin\theta = 0## since acceleration is non-present in that direction.

We're left with:

##\ddot y'= -g##.

It seems equation of motions of the ball is exactly the same in x,y and x',y' frame and this kind of suggests that space is isotropic, while we know that it's not isotropic. Where am I making a mistake ? I'm using general transformation matrix, so I shouldn't be needing to use specific ##\theta## insertions.
 
Physics news on Phys.org
gionole said:
##\ddot x'sin\theta = 0## since acceleration is non-present in that direction.
This is wrong because ##\ddot x'## is a linear combination of both ##\ddot x##, ##\ddot y## and ##\ddot y \neq 0##.
 
  • Like
  • Care
Likes   Reactions: gionole and Dale
renormalize said:
This is wrong because ##\ddot x'## is a linear combination of both ##\ddot x##, ##\ddot y## and ##\ddot y \neq 0##.
Ah, true, thank you. so we got:

##m\frac{d^2}{dt^2}(x'sin\theta + y'cos\theta) = -\frac{d}{dy'}(mg(x'sin\theta + y'cos\theta))##

##\ddot x'sin\theta + \ddot y'cos\theta = -gcos\theta##

how do I continue from this to get to the equation that only contains ##\ddot y'##
 
gionole said:
Ah, true, thank you. so we got:

##m\frac{d^2}{dt^2}(x'sin\theta + y'cos\theta) = -\frac{d}{dy'}(mg(x'sin\theta + y'cos\theta))##

##\ddot x'sin\theta + \ddot y'cos\theta = -gcos\theta##

how do I continue from this to get to the equation that only contains ##\ddot y'##
Remember that in the unprimed-frame you also have the second equation-of-motion (EOM) ##m\ddot x=0##. You should transform this equation as well so you end up with two EOMs to solve in the primed-frame.
 
  • Care
Likes   Reactions: gionole
In x,y frame, system of equations:

##\ddot x = 0## (1)
##\ddot y = -\frac{d}{dy}(gy)## (2)

we know that:

##x = x'cos\theta - y'sin\theta## (3)
##y = x'sin\theta + y'cos\theta## (4)

so, plugging (3) into (1), we get:

##\ddot x' cos\theta - \ddot y' sin\theta = 0##
##\ddot x' = \frac{\ddot y' sin\theta}{cos\theta}##

plugging (4) into (2),

##\ddot x'sin\theta + \ddot y'cos\theta = -\frac{d}{dy}(g(x'sin\theta + y'cos\theta)##

My first question is: should I now do ##\frac{d}{dy}## or ##\frac{d}{dy'}## ? We only changed ##y## by ##x'sin\theta + y'cos\theta##, so I guess, I can't change ##\frac{d}{dy}## by ##\frac{d}{dy'}##, right ? If so, what's ##-\frac{d}{dy}(x'sin\theta)## ? I would need to substitute ##x'## by another transformation that I can get from (3) ?
 
gionole said:
In x,y frame, system of equations:

##\ddot x = 0## (1)
##\ddot y = -\frac{d}{dy}(gy)## (2)
You can always apply a rotation-of-coordinates to the partial derivatives. But in this case it's easier to just perform the ##y##-differentiation in eq.(2) to get ##\ddot y = -g## so that you only have to rotate ##x## and ##y##.
 
  • Care
Likes   Reactions: gionole
renormalize said:
You can always apply a rotation-of-coordinates to the partial derivatives. But in this case it's easier to just perform the ##y##-differentiation in eq.(2) to get ##\ddot y = -g## so that you only have to rotate ##x## and ##y##.
Yes, I know that, I asked the question in #5 for learning purposes. So, basically, this is how I do it: If you don't got time to go through, here is my 2 short questions:

--Short Version--

Q1: I end up with ##\ddot y' = -gcos\theta##, would you say this is correct ?

Q2: When we have ##\ddot y = -\frac{d}{dy}(gy)##, and when I replace ##y## by ##x'sin\theta + y'cos\theta##, I still don't change wrt derivative (I leave ##dy## and not change it to ##dy'##). Correct ?

-- Long Version--

##\ddot x = 0## (1)
##\ddot y = -\frac{d}{dy}(gy)## (2)

##\ddot x'cos\theta - \ddot y'sin\theta = 0##
##\ddot x' = \frac{\ddot y'sin\theta}{cos\theta}##

##\ddot x'sin\theta + \ddot y'cos\theta = -g\frac{d}{dy}(x'sin\theta + y'cos\theta)## (Note that I still leave ##\frac{d}{dy}## here) (3)

Now, we know that ##x'## contains ##y## inside, so we can't really say that ##\frac{d}{dy}(x'sin\theta) = 0##, so we need to get what ##x'## and ##y'## are.

After some math, I end up with:

##x' = xcos\theta + ysin\theta##
##y' = -xsin\theta + ycos\theta##

we put them inside (3).

##\ddot x'sin\theta + \ddot y'cos\theta = -g\frac{d}{dy}(x'sin\theta + y'cos\theta)##
##\ddot x'sin\theta + \ddot y'cos\theta = -g\frac{d}{dy}((xcos\theta + ysin\theta)sin\theta + (-xsin\theta + ycos\theta)cos\theta)##

##\ddot x'sin\theta + \ddot y'cos\theta = = -g(sin^2\theta + cos^2\theta)##
##\frac{\ddot y'sin\theta}{cos\theta}sin\theta + \ddot y'cos\theta = -g##
##\frac{\ddot y'sin^2\theta}{cos\theta} + \ddot y'cos\theta = -g##
##\frac{\ddot y'sin^2\theta + \ddot y'cos^2\theta}{cos\theta} = -g##
##\ddot y' = -gcos\theta##

Would you say this is all correct ? @renormalize
 
gionole said:
##\ddot y' = -gcos\theta##

Would you say this is all correct ? @renormalize
Yes, you have the right expression for ##\ddot y'##, but don't forget to similarly display the second EOM giving ##\ddot x'## in terms of ##g## and ##\theta##.
 
  • Care
Likes   Reactions: gionole

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K