B Copenhagen Interpretation and collapse moment

entropy1
Messages
1,232
Reaction score
72
Is it still true that under the Copenhagen Interpretation the standard theory of QM tells us that a measurement apparatus gets into superposition of possible measurement outcomes and does not tell us how and when we get a single decisive outcome? (The so-called "Measurement problem")
 
Last edited:
Physics news on Phys.org
entropy1 said:
Is it still true that under the Copenhagen Interpretation the standard theory of QM tells us that a measurement apparatus gets into superposition of possible measurement outcomes and does not tell us how and when we get a single decisive outcome?
This is what the MWI says. The CI assumes the measurement apparatus is never in a superposition of states. It says you get a single measurement result when you apply the Born rule(and do a measurement).
 
Last edited:
entropy1 said:
does not tell us how and when we get a single decisive outcome?
It doesn't tell how, but it does tell when. It's when a measurement is performed. Now if you wonder how then the time of decay is random, see my https://arxiv.org/abs/2010.07575 .
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...

Similar threads

Back
Top