Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Copper Wire as Salt Bridge?

  1. Dec 5, 2006 #1
    in a recent chemistry experiment at school, two voltaic (galvanic) cells were set up with the same solutions in either beaker (one being Copper Sulfate, and the other was another metal solution) anyway, one had a potassium nitrate salt bridge, the other a copper wire salt bridge....
    sooooooooooo how come the one with the copper wire as the salt bridge still worked and produced a current when the ions cannot flow in between the solutions?
    the teacher was unable to answer this and apparently the school has emailed a university to ask and even they could not provide an answer does anyone have any idea?
     
  2. jcsd
  3. Dec 5, 2006 #2

    Gokul43201

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Can you please describe the situation completely?

    1. What are the cells made of (electrodes, electrolytes, bridges)?
    2. What were the observations (cell EMF, lifetime, other)?
     
  4. Dec 5, 2006 #3
    Ok here you go -
    Cells - CuSO4 and ZnSO4 (both cells)
    Electrodes - Cu plate and a Zn plate (both cells)
    Bridges - KNO3 soaked paper for the first cell
    - Length of copper wire for second cell dipped into either solution

    EMF - voltage was less than 1V for both cells (there was about 75ml of 1M solution in both beakers
    lifetime - both cells were running for about 5 mintues - there was still a current in both when we stopped them
     
  5. Dec 5, 2006 #4

    Gokul43201

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Interesting! How were the electrolytes separated? Were they in different beakers?
     
  6. Dec 5, 2006 #5
    yes different beakers about 5cm apart
     
  7. Dec 6, 2006 #6
    does anyone have an answer or is this something that is going to have to go on without anyone knowing?
     
  8. Dec 6, 2006 #7

    Gokul43201

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Do you know what the current draw, or series effective resistance was?

    If the average current was only of order a milliamp, then you've only had to make a micromole of ions (small compared to 75 millimoles). This might easily be some non-steady state behaviour that you could expect to see for several tens/hundreds of minutes before saturation became noticeable.

    Here's a guess:

    You might have what is nothing but a pair of galvanic cells connected in series:
    Cell1 = Zn(plate) | Zn(2+) || H(+) | H2, Cu(wire)
    Cell2 = Cu(wire) | Cu(2+) || Cu(2+) | Cu(plate)

    Clearly, cell2 has a std EMF of 0V, but cell1 has a standard EMF of 0.76V. The series voltage is the sum of the two real EMFs (the second one being 0V so long as the copper in the electrode and wire had similar purity) and can be calculated from the Nernst equation (I get something like 0.96V).
     
    Last edited: Dec 6, 2006
  9. Dec 6, 2006 #8
    the two galvanic cells were separated completely..... what you said there is stuff we havent convered yet so makes no sense can you reword that or make it "year 12" style for me? sorry
     
  10. Dec 6, 2006 #9

    GCT

    User Avatar
    Science Advisor
    Homework Helper

    One of my guesses on what's happening in this situation pertains to the formation of some type of a junction potential.......try the experiment again with the implementation of an adequate stirring mechanism.

    Try measuring the mass of the "Copper salt bridge" before and after the experiment, be sure to have it dried adequately for the post-experimental weighing.

    Also, weigh the Copper and Zinc electrode before and after the experiment.

    Why did you use the Copper wire as a salt bridge in the first place?
     
  11. Dec 6, 2006 #10
    we used the copper wire because it was an experiment from a text book. I think it was designed to show us that the transfer of ions needs to happen in order for the cell to function properly and complete the circuit.... apparently not?
     
  12. Dec 6, 2006 #11

    GCT

    User Avatar
    Science Advisor
    Homework Helper

    Was the peculiar result observed for your experiment only, or was this the case with the other students as well?
     
  13. Dec 7, 2006 #12
    it was only done once for the whole class.... i hope you dont mind i gave ur explaination above to my chemistry teacher to see what she made of it so ill ask her tomorrow.....
    we could repeat the experiment again and i can get you some more results if you like? i would certainly be interested
     
  14. Dec 7, 2006 #13

    GCT

    User Avatar
    Science Advisor
    Homework Helper

    .......try the experiment again, and measure and record the EMFs at 30 second intervals, for a total time of 5 minutes. Afterwards to mock trial where you don't record anything, after 3 minutes take the "Copper salt bridge" out and assess the trend in EMF.

    Measure the masses of the Copper and Zinc electrodes as well as the Copper wire that was used as a salt bridge before and after the experiment, wash each of them with distilled water afterwards and either air dry or oven dry the three wires.

    Another thing that you can do is to setup a Galvanic cell with a Copper electrode wire at one end and the Copper wire you used as a salt bridge at the other, assess the initial trend in EMF. Place the Copper electrode into the Copper Sulfate solution which was employed in the first experiment and use a fresh 75 mL 1 M CuSO4 solution to immerse the "Copper salt bridge."

    Make sure that the "Copper salt bridge" is not connected to anything else then the two beakers.
     
  15. Dec 7, 2006 #14
    alright, ill see my chemistry teacher today and hopefully do the prac again and send u my results
     
  16. Dec 10, 2006 #15
    ok, we are doing chemistry next period and my teacher wants to try the experiment again so ill post results for you guys :)
    my teacher is quite intruiged with it too, and thanks for the responses they have helped immensely
     
  17. Jun 10, 2011 #16
    Hi, I'm also in year 12 and did the same experiment and when we hooked the cell up to the voltmeter we had a voltage of 0.76, the experiment was conducted fastidiously and according to my teacher the exact same thing has been happening for years now and he's never ( been bothered or ) been able to find an answer. I'll see if we can try out the copper cell which was suggested as being the component producing charge. Thankyou for your help!
     
  18. Jun 10, 2011 #17

    DrDu

    User Avatar
    Science Advisor

    I think Gokul43201 explanation is most plausible: hydronium ions get reduced to hydrogen at the copper wire in the Zn half element and copper ions get oxidized to elementary copper on the in the Cu half element.
    The over-voltage (don't know whether this is the correct translation of german "Ueberspannung") is lower on Cu than at Zn for hydrogen formation. So the reaction would be a combination of a galvanic element and an electrolysis.
     
  19. Jun 10, 2011 #18

    SpectraCat

    User Avatar
    Science Advisor

    I agree with Dr. Du, but I would suggest trying to test it. If it really is acting as a pair of cells in series, then the potential should depend on the material used for the bridge. If you use a non-redox active conductor, such as carbon foil (or cloth or paper), that should shut down the 2nd cell, so there is no voltage. You could even use two solid carbon electrodes connected by a wire, provided that the wire doesn't come into contact with the solutions.

    It would also be interesting to observe the effects of using wires made of other metals.
     
  20. Jun 10, 2011 #19

    DrDu

    User Avatar
    Science Advisor

    In fact, if Gokuls idea were true, the copper cell should not modify the voltage (but the current due to it's resistance). So you could try whether hanging a copper wire into the Zn half cell is sufficient to produce a current.
     
  21. Jun 10, 2011 #20

    SpectraCat

    User Avatar
    Science Advisor

    No, that should not work .. Zinc lies above Copper in the activity series. However, hanging a zinc wire into the copper half cell should result in a spontaneous reaction. I know for sure that reaction goes in acidic solution, but it should go in neutral solution as well based on the free energy change.

    [EDIT] Just to be completely clear ... if you acidify the solution in the zinc half-cell, then you will see a reaction of the zinc metal anyway .. zinc dissolves via redox in acidic solution, with the evolution of H2. However I don't think the process would go in neutral solution simply from adding copper metal, unless there is something special about the reduction of H+ on copper that I am not considering.
     
    Last edited: Jun 10, 2011
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Copper Wire as Salt Bridge?
  1. Salt Bridge question (Replies: 3)

  2. Salt bridge (Replies: 5)

Loading...