I Correct constructed example of Abelian Monoid?

elias001
Messages
359
Reaction score
24
TL;DR Summary
I would like to know if the construction of a concrete example of an abelian monoid in the category of abelian monoid is correct.
The following question is taken from ##\textit{Arrows, Structures and Functors the categorical imperative}## by Arbib and Manes.

##\color{Red}{Questions:}##

Is the follow a correct concrete example for the coproduct of ##\textbf{Abm},## (category of abelian monoid) by modifying notations as necessary according to ##\textbf{Proposition 3:}## in the ##\color{Green}{Background:}## section below in ##\textbf{(3)},##:

Let ##I=\{1,2\},## Let ##A_1=X_1## and ##A_2=X_2,## and ##x_1\in X_1## and ##x_2\in X_2,## a monoid homomorphic map ##f(x_1\cdot x_2)=f(x_1)\cdot f(x_2),## with the assumption that ##x_1\cdot x_2=x_2\cdot x_1.## So ##f\in \coprod_{i\in I}X_i.## means for ##I=\{1,2\},## ##f\in X_1\sqcup X_2,## we have ##f:\{1,2\}\to X_1\sqcup X_2:f\mapsto f(i),## and ##f(x_1\cdot x_2):\{1,2\}\to X_1\sqcup X_2:f(x_1\cdot x_2)\mapsto f(x_1)\cdot f(x_2).##

For the injection maps which are also monoid homomorphism, ##\text{in}_j:X_j\mapsto X_1\sqcup X_2:x_j\mapsto f(x_i)=0## for ##i\neq j$ and $f(x_j)=x_j## for ##i=j,## with ##f## being a monoid homomorphic map. ##\text{in}_j(x_1\cdot x_2)=f(x_1\cdot x_2)=f(x_1)\cdot f(x_2)=\text{in}_j(x_1)\cdot \text{in}_j(x_2)## and hence ##\text{in}_1(x_1\cdot x_2)=f(x_1\cdot x_2)=x_1,## ##\text{in}_2(x_1\cdot x_2)=f(x_1\cdot x_2)=x_2##


For the ##q## homomorphic map being defined as: ##q:\coprod_{i\in I}X_i\to C:f\mapsto \cdot_{i\in I}q_i(\text{in}_j(x_j))=\cdot_{i\in I}q_i(f(x_i))=q_i(0)## for ##i\neq j## and ##\cdot_{i\in I}q_i(\text{in}_j(x_j))=\cdot_{i\in I}q_i(f(x_i))=q_i(x_i)## for ##i=j,##

and so,

##q:\coprod_{i\in I}X_i\to C:f\mapsto \cdot_{i\in I=\{1,2\}}q_i(\text{in}_j(x_1\cdot x_2))= \cdot_{i\in I}q_i(f(x_1\cdot x_2))=q_i(f(x_1)\cdot f(x_2))=q_i(f(x_1))\cdot q_i(f(x_2)),##


With ##I=\{1,2\},i=1,2,j=1,2,x_1\in X_1## and ##x_2\in X_2,## gives

##q:X_1\sqcup X_2\to C:f\mapsto q_1(\text{in}_1(x_1\cdot x_2)=q_1(f(x_1)\cdot f(x_2))=q_1(f(x_1))\cdot q_1(f(x_2))=q_1(x_1)\cdot q_1(0),##

##q:X_1\sqcup X_2\to C:f\mapsto q_1(\text{in}_2(x_1\cdot x_2)=q_1(f(x_1)\cdot f(x_2))=q_1(f(x_1))\cdot q_1(f(x_2))=q_1(0)\cdot q_1(x_2),##

##q:X_1\sqcup X_2\to C:f\mapsto q_2(\text{in}_1(x_1\cdot x_2)=q_2(f(x_1)\cdot f(x_2))=q_2(f(x_1))\cdot q_2(f(x_2))=q_2(x_1)\cdot q_2(0),##

##q:X_1\sqcup X_2\to C:f\mapsto q_2(\text{in}_2(x_1\cdot x_2)=q_2(f(x_1)\cdot f(x_2))=q_2(f(x_1))\cdot q_2(f(x_2))=q_2(0)\cdot q_2(x_2),##

##\color{Green}{Background:}##

##\textbf{(1)}## ##\textbf{Definition 1:}## A ##\textbf{monoid}## is a set ##X## equipped with a function ##\cdot:X\times X\to X## (with monoid ##\textbf{multiplication}##) and a distinguished element (the monoid ##\textbf{identity}##) subject to the two laws:

##x\cdot (y\cdot z)=(x \cdot y)\cdot z## for all ##x,y,z##

##x\cdot e=x=e\cdot x## for all ##x.##

We abbreviate ##x\cdot y## to ##xy.##

##\textbf{(2)}## ##\textbf{Definition 2:}## If ##X,Y## are monoids, a function ##f:X\to Y## is a monoid ##\textbf{homomorphism}## if ##f## preserves the monoid structure of multiplication and identities, i.e., if ##f(x\cdot x')=f(x)\cdot f(x')## and ##f(e)=e.##

The ##\textbf{identity function}## ##\text{id}_X:X\to X## is surely a monoid homomorphism and the usual ##\textbf{composite}## ##g\cdot f: X\to X## of two functions is a monoid homomorphism if ##f:X\to Y## and ##g:Y\to Z.##

##\textbf{(3)}## ##\textbf{Proposition 3:}## Given a family ##(A_i\mid i\in I)## of vector spaces, we define their ##\textbf{weak direct sum}## to be

$$\coprod_{i\in I}A_i=\{f\mid f:I\to \cup_{i \in I}A_i;f(i)\in A_i \text{
for each }i;\text{ and supp}(f)\text{ is finite}\}$$

considered as a subspace of ##\prod_{i\in I}A_i.## Then ##\coprod_{i\in I}A_i## together with the injection maps

##\text{in}_j:A_j\to \coprod_{i\in I}A_i:a_j\mapsto## the ##f## with ##f(i)=0## for ##i\neq j,## and with ##f(j)=a_j##

is a coproduct of ##(A_i)## in the category ##\textbf{Vect}.## (Category of vector spaces)

##\textbf{(4)}## ##\textbf{Assumed exercise:}##

A monoid ##X## is ##\textbf{abelian}## if ##xy=yx## for all ##x,y.## Let ##\textbf{Abm}## be the category of abelian monoids and monoid homomorphisms. Prove that products, equalizers and coequalizers can be constructed by mimicking these constructs in ##\textbf{Mon}## or ##\textbf{Grp}.## (category of abelian monoid or groups) Construct coproducts in ##\textbf{Abm}## by imitating the construction in ##\textbf{Vect}## (category of vector spaces)

Thank you in advance.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top