Correct constructed example of Abelian Monoid?

Click For Summary
SUMMARY

The discussion focuses on the construction of coproducts in the category of abelian monoids (denoted as Abm) using a concrete example involving two monoids, X1 and X2. The example illustrates the monoid homomorphic map f and the injection maps in_j that maintain the monoid structure. The definitions and propositions from the text Arrows, Structures and Functors the categorical imperative by Arbib and Manes are applied to validate the construction of coproducts, demonstrating how the weak direct sum of vector spaces can be adapted for abelian monoids.

PREREQUISITES
  • Understanding of monoids and their properties
  • Familiarity with monoid homomorphisms and their definitions
  • Knowledge of coproducts in category theory
  • Basic concepts of vector spaces and their weak direct sums
NEXT STEPS
  • Study category theory fundamentals, focusing on coproducts and their applications
  • Explore abelian monoids and their properties in depth
  • Learn about monoid homomorphism proofs and examples
  • Investigate the relationship between vector spaces and abelian monoids in categorical contexts
USEFUL FOR

This discussion is beneficial for mathematicians, category theorists, and computer scientists interested in algebraic structures, particularly those working with abelian monoids and their applications in theoretical frameworks.

elias001
Messages
389
Reaction score
30
TL;DR
I would like to know if the construction of a concrete example of an abelian monoid in the category of abelian monoid is correct.
The following question is taken from ##\textit{Arrows, Structures and Functors the categorical imperative}## by Arbib and Manes.

##\color{Red}{Questions:}##

Is the follow a correct concrete example for the coproduct of ##\textbf{Abm},## (category of abelian monoid) by modifying notations as necessary according to ##\textbf{Proposition 3:}## in the ##\color{Green}{Background:}## section below in ##\textbf{(3)},##:

Let ##I=\{1,2\},## Let ##A_1=X_1## and ##A_2=X_2,## and ##x_1\in X_1## and ##x_2\in X_2,## a monoid homomorphic map ##f(x_1\cdot x_2)=f(x_1)\cdot f(x_2),## with the assumption that ##x_1\cdot x_2=x_2\cdot x_1.## So ##f\in \coprod_{i\in I}X_i.## means for ##I=\{1,2\},## ##f\in X_1\sqcup X_2,## we have ##f:\{1,2\}\to X_1\sqcup X_2:f\mapsto f(i),## and ##f(x_1\cdot x_2):\{1,2\}\to X_1\sqcup X_2:f(x_1\cdot x_2)\mapsto f(x_1)\cdot f(x_2).##

For the injection maps which are also monoid homomorphism, ##\text{in}_j:X_j\mapsto X_1\sqcup X_2:x_j\mapsto f(x_i)=0## for ##i\neq j$ and $f(x_j)=x_j## for ##i=j,## with ##f## being a monoid homomorphic map. ##\text{in}_j(x_1\cdot x_2)=f(x_1\cdot x_2)=f(x_1)\cdot f(x_2)=\text{in}_j(x_1)\cdot \text{in}_j(x_2)## and hence ##\text{in}_1(x_1\cdot x_2)=f(x_1\cdot x_2)=x_1,## ##\text{in}_2(x_1\cdot x_2)=f(x_1\cdot x_2)=x_2##


For the ##q## homomorphic map being defined as: ##q:\coprod_{i\in I}X_i\to C:f\mapsto \cdot_{i\in I}q_i(\text{in}_j(x_j))=\cdot_{i\in I}q_i(f(x_i))=q_i(0)## for ##i\neq j## and ##\cdot_{i\in I}q_i(\text{in}_j(x_j))=\cdot_{i\in I}q_i(f(x_i))=q_i(x_i)## for ##i=j,##

and so,

##q:\coprod_{i\in I}X_i\to C:f\mapsto \cdot_{i\in I=\{1,2\}}q_i(\text{in}_j(x_1\cdot x_2))= \cdot_{i\in I}q_i(f(x_1\cdot x_2))=q_i(f(x_1)\cdot f(x_2))=q_i(f(x_1))\cdot q_i(f(x_2)),##


With ##I=\{1,2\},i=1,2,j=1,2,x_1\in X_1## and ##x_2\in X_2,## gives

##q:X_1\sqcup X_2\to C:f\mapsto q_1(\text{in}_1(x_1\cdot x_2)=q_1(f(x_1)\cdot f(x_2))=q_1(f(x_1))\cdot q_1(f(x_2))=q_1(x_1)\cdot q_1(0),##

##q:X_1\sqcup X_2\to C:f\mapsto q_1(\text{in}_2(x_1\cdot x_2)=q_1(f(x_1)\cdot f(x_2))=q_1(f(x_1))\cdot q_1(f(x_2))=q_1(0)\cdot q_1(x_2),##

##q:X_1\sqcup X_2\to C:f\mapsto q_2(\text{in}_1(x_1\cdot x_2)=q_2(f(x_1)\cdot f(x_2))=q_2(f(x_1))\cdot q_2(f(x_2))=q_2(x_1)\cdot q_2(0),##

##q:X_1\sqcup X_2\to C:f\mapsto q_2(\text{in}_2(x_1\cdot x_2)=q_2(f(x_1)\cdot f(x_2))=q_2(f(x_1))\cdot q_2(f(x_2))=q_2(0)\cdot q_2(x_2),##

##\color{Green}{Background:}##

##\textbf{(1)}## ##\textbf{Definition 1:}## A ##\textbf{monoid}## is a set ##X## equipped with a function ##\cdot:X\times X\to X## (with monoid ##\textbf{multiplication}##) and a distinguished element (the monoid ##\textbf{identity}##) subject to the two laws:

##x\cdot (y\cdot z)=(x \cdot y)\cdot z## for all ##x,y,z##

##x\cdot e=x=e\cdot x## for all ##x.##

We abbreviate ##x\cdot y## to ##xy.##

##\textbf{(2)}## ##\textbf{Definition 2:}## If ##X,Y## are monoids, a function ##f:X\to Y## is a monoid ##\textbf{homomorphism}## if ##f## preserves the monoid structure of multiplication and identities, i.e., if ##f(x\cdot x')=f(x)\cdot f(x')## and ##f(e)=e.##

The ##\textbf{identity function}## ##\text{id}_X:X\to X## is surely a monoid homomorphism and the usual ##\textbf{composite}## ##g\cdot f: X\to X## of two functions is a monoid homomorphism if ##f:X\to Y## and ##g:Y\to Z.##

##\textbf{(3)}## ##\textbf{Proposition 3:}## Given a family ##(A_i\mid i\in I)## of vector spaces, we define their ##\textbf{weak direct sum}## to be

$$\coprod_{i\in I}A_i=\{f\mid f:I\to \cup_{i \in I}A_i;f(i)\in A_i \text{
for each }i;\text{ and supp}(f)\text{ is finite}\}$$

considered as a subspace of ##\prod_{i\in I}A_i.## Then ##\coprod_{i\in I}A_i## together with the injection maps

##\text{in}_j:A_j\to \coprod_{i\in I}A_i:a_j\mapsto## the ##f## with ##f(i)=0## for ##i\neq j,## and with ##f(j)=a_j##

is a coproduct of ##(A_i)## in the category ##\textbf{Vect}.## (Category of vector spaces)

##\textbf{(4)}## ##\textbf{Assumed exercise:}##

A monoid ##X## is ##\textbf{abelian}## if ##xy=yx## for all ##x,y.## Let ##\textbf{Abm}## be the category of abelian monoids and monoid homomorphisms. Prove that products, equalizers and coequalizers can be constructed by mimicking these constructs in ##\textbf{Mon}## or ##\textbf{Grp}.## (category of abelian monoid or groups) Construct coproducts in ##\textbf{Abm}## by imitating the construction in ##\textbf{Vect}## (category of vector spaces)

Thank you in advance.
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 0 ·
Replies
0
Views
959
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K