elias001
- 359
- 24
- TL;DR Summary
- I would like to know if the construction of a concrete example of an abelian monoid in the category of abelian monoid is correct.
The following question is taken from ##\textit{Arrows, Structures and Functors the categorical imperative}## by Arbib and Manes.
##\color{Red}{Questions:}##
Is the follow a correct concrete example for the coproduct of ##\textbf{Abm},## (category of abelian monoid) by modifying notations as necessary according to ##\textbf{Proposition 3:}## in the ##\color{Green}{Background:}## section below in ##\textbf{(3)},##:
Let ##I=\{1,2\},## Let ##A_1=X_1## and ##A_2=X_2,## and ##x_1\in X_1## and ##x_2\in X_2,## a monoid homomorphic map ##f(x_1\cdot x_2)=f(x_1)\cdot f(x_2),## with the assumption that ##x_1\cdot x_2=x_2\cdot x_1.## So ##f\in \coprod_{i\in I}X_i.## means for ##I=\{1,2\},## ##f\in X_1\sqcup X_2,## we have ##f:\{1,2\}\to X_1\sqcup X_2:f\mapsto f(i),## and ##f(x_1\cdot x_2):\{1,2\}\to X_1\sqcup X_2:f(x_1\cdot x_2)\mapsto f(x_1)\cdot f(x_2).##
For the injection maps which are also monoid homomorphism, ##\text{in}_j:X_j\mapsto X_1\sqcup X_2:x_j\mapsto f(x_i)=0## for ##i\neq j$ and $f(x_j)=x_j## for ##i=j,## with ##f## being a monoid homomorphic map. ##\text{in}_j(x_1\cdot x_2)=f(x_1\cdot x_2)=f(x_1)\cdot f(x_2)=\text{in}_j(x_1)\cdot \text{in}_j(x_2)## and hence ##\text{in}_1(x_1\cdot x_2)=f(x_1\cdot x_2)=x_1,## ##\text{in}_2(x_1\cdot x_2)=f(x_1\cdot x_2)=x_2##
For the ##q## homomorphic map being defined as: ##q:\coprod_{i\in I}X_i\to C:f\mapsto \cdot_{i\in I}q_i(\text{in}_j(x_j))=\cdot_{i\in I}q_i(f(x_i))=q_i(0)## for ##i\neq j## and ##\cdot_{i\in I}q_i(\text{in}_j(x_j))=\cdot_{i\in I}q_i(f(x_i))=q_i(x_i)## for ##i=j,##
and so,
##q:\coprod_{i\in I}X_i\to C:f\mapsto \cdot_{i\in I=\{1,2\}}q_i(\text{in}_j(x_1\cdot x_2))= \cdot_{i\in I}q_i(f(x_1\cdot x_2))=q_i(f(x_1)\cdot f(x_2))=q_i(f(x_1))\cdot q_i(f(x_2)),##
With ##I=\{1,2\},i=1,2,j=1,2,x_1\in X_1## and ##x_2\in X_2,## gives
##q:X_1\sqcup X_2\to C:f\mapsto q_1(\text{in}_1(x_1\cdot x_2)=q_1(f(x_1)\cdot f(x_2))=q_1(f(x_1))\cdot q_1(f(x_2))=q_1(x_1)\cdot q_1(0),##
##q:X_1\sqcup X_2\to C:f\mapsto q_1(\text{in}_2(x_1\cdot x_2)=q_1(f(x_1)\cdot f(x_2))=q_1(f(x_1))\cdot q_1(f(x_2))=q_1(0)\cdot q_1(x_2),##
##q:X_1\sqcup X_2\to C:f\mapsto q_2(\text{in}_1(x_1\cdot x_2)=q_2(f(x_1)\cdot f(x_2))=q_2(f(x_1))\cdot q_2(f(x_2))=q_2(x_1)\cdot q_2(0),##
##q:X_1\sqcup X_2\to C:f\mapsto q_2(\text{in}_2(x_1\cdot x_2)=q_2(f(x_1)\cdot f(x_2))=q_2(f(x_1))\cdot q_2(f(x_2))=q_2(0)\cdot q_2(x_2),##
##\color{Green}{Background:}##
##\textbf{(1)}## ##\textbf{Definition 1:}## A ##\textbf{monoid}## is a set ##X## equipped with a function ##\cdot:X\times X\to X## (with monoid ##\textbf{multiplication}##) and a distinguished element (the monoid ##\textbf{identity}##) subject to the two laws:
##x\cdot (y\cdot z)=(x \cdot y)\cdot z## for all ##x,y,z##
##x\cdot e=x=e\cdot x## for all ##x.##
We abbreviate ##x\cdot y## to ##xy.##
##\textbf{(2)}## ##\textbf{Definition 2:}## If ##X,Y## are monoids, a function ##f:X\to Y## is a monoid ##\textbf{homomorphism}## if ##f## preserves the monoid structure of multiplication and identities, i.e., if ##f(x\cdot x')=f(x)\cdot f(x')## and ##f(e)=e.##
The ##\textbf{identity function}## ##\text{id}_X:X\to X## is surely a monoid homomorphism and the usual ##\textbf{composite}## ##g\cdot f: X\to X## of two functions is a monoid homomorphism if ##f:X\to Y## and ##g:Y\to Z.##
##\textbf{(3)}## ##\textbf{Proposition 3:}## Given a family ##(A_i\mid i\in I)## of vector spaces, we define their ##\textbf{weak direct sum}## to be
$$\coprod_{i\in I}A_i=\{f\mid f:I\to \cup_{i \in I}A_i;f(i)\in A_i \text{
for each }i;\text{ and supp}(f)\text{ is finite}\}$$
considered as a subspace of ##\prod_{i\in I}A_i.## Then ##\coprod_{i\in I}A_i## together with the injection maps
##\text{in}_j:A_j\to \coprod_{i\in I}A_i:a_j\mapsto## the ##f## with ##f(i)=0## for ##i\neq j,## and with ##f(j)=a_j##
is a coproduct of ##(A_i)## in the category ##\textbf{Vect}.## (Category of vector spaces)
##\textbf{(4)}## ##\textbf{Assumed exercise:}##
A monoid ##X## is ##\textbf{abelian}## if ##xy=yx## for all ##x,y.## Let ##\textbf{Abm}## be the category of abelian monoids and monoid homomorphisms. Prove that products, equalizers and coequalizers can be constructed by mimicking these constructs in ##\textbf{Mon}## or ##\textbf{Grp}.## (category of abelian monoid or groups) Construct coproducts in ##\textbf{Abm}## by imitating the construction in ##\textbf{Vect}## (category of vector spaces)
Thank you in advance.
##\color{Red}{Questions:}##
Is the follow a correct concrete example for the coproduct of ##\textbf{Abm},## (category of abelian monoid) by modifying notations as necessary according to ##\textbf{Proposition 3:}## in the ##\color{Green}{Background:}## section below in ##\textbf{(3)},##:
Let ##I=\{1,2\},## Let ##A_1=X_1## and ##A_2=X_2,## and ##x_1\in X_1## and ##x_2\in X_2,## a monoid homomorphic map ##f(x_1\cdot x_2)=f(x_1)\cdot f(x_2),## with the assumption that ##x_1\cdot x_2=x_2\cdot x_1.## So ##f\in \coprod_{i\in I}X_i.## means for ##I=\{1,2\},## ##f\in X_1\sqcup X_2,## we have ##f:\{1,2\}\to X_1\sqcup X_2:f\mapsto f(i),## and ##f(x_1\cdot x_2):\{1,2\}\to X_1\sqcup X_2:f(x_1\cdot x_2)\mapsto f(x_1)\cdot f(x_2).##
For the injection maps which are also monoid homomorphism, ##\text{in}_j:X_j\mapsto X_1\sqcup X_2:x_j\mapsto f(x_i)=0## for ##i\neq j$ and $f(x_j)=x_j## for ##i=j,## with ##f## being a monoid homomorphic map. ##\text{in}_j(x_1\cdot x_2)=f(x_1\cdot x_2)=f(x_1)\cdot f(x_2)=\text{in}_j(x_1)\cdot \text{in}_j(x_2)## and hence ##\text{in}_1(x_1\cdot x_2)=f(x_1\cdot x_2)=x_1,## ##\text{in}_2(x_1\cdot x_2)=f(x_1\cdot x_2)=x_2##
For the ##q## homomorphic map being defined as: ##q:\coprod_{i\in I}X_i\to C:f\mapsto \cdot_{i\in I}q_i(\text{in}_j(x_j))=\cdot_{i\in I}q_i(f(x_i))=q_i(0)## for ##i\neq j## and ##\cdot_{i\in I}q_i(\text{in}_j(x_j))=\cdot_{i\in I}q_i(f(x_i))=q_i(x_i)## for ##i=j,##
and so,
##q:\coprod_{i\in I}X_i\to C:f\mapsto \cdot_{i\in I=\{1,2\}}q_i(\text{in}_j(x_1\cdot x_2))= \cdot_{i\in I}q_i(f(x_1\cdot x_2))=q_i(f(x_1)\cdot f(x_2))=q_i(f(x_1))\cdot q_i(f(x_2)),##
With ##I=\{1,2\},i=1,2,j=1,2,x_1\in X_1## and ##x_2\in X_2,## gives
##q:X_1\sqcup X_2\to C:f\mapsto q_1(\text{in}_1(x_1\cdot x_2)=q_1(f(x_1)\cdot f(x_2))=q_1(f(x_1))\cdot q_1(f(x_2))=q_1(x_1)\cdot q_1(0),##
##q:X_1\sqcup X_2\to C:f\mapsto q_1(\text{in}_2(x_1\cdot x_2)=q_1(f(x_1)\cdot f(x_2))=q_1(f(x_1))\cdot q_1(f(x_2))=q_1(0)\cdot q_1(x_2),##
##q:X_1\sqcup X_2\to C:f\mapsto q_2(\text{in}_1(x_1\cdot x_2)=q_2(f(x_1)\cdot f(x_2))=q_2(f(x_1))\cdot q_2(f(x_2))=q_2(x_1)\cdot q_2(0),##
##q:X_1\sqcup X_2\to C:f\mapsto q_2(\text{in}_2(x_1\cdot x_2)=q_2(f(x_1)\cdot f(x_2))=q_2(f(x_1))\cdot q_2(f(x_2))=q_2(0)\cdot q_2(x_2),##
##\color{Green}{Background:}##
##\textbf{(1)}## ##\textbf{Definition 1:}## A ##\textbf{monoid}## is a set ##X## equipped with a function ##\cdot:X\times X\to X## (with monoid ##\textbf{multiplication}##) and a distinguished element (the monoid ##\textbf{identity}##) subject to the two laws:
##x\cdot (y\cdot z)=(x \cdot y)\cdot z## for all ##x,y,z##
##x\cdot e=x=e\cdot x## for all ##x.##
We abbreviate ##x\cdot y## to ##xy.##
##\textbf{(2)}## ##\textbf{Definition 2:}## If ##X,Y## are monoids, a function ##f:X\to Y## is a monoid ##\textbf{homomorphism}## if ##f## preserves the monoid structure of multiplication and identities, i.e., if ##f(x\cdot x')=f(x)\cdot f(x')## and ##f(e)=e.##
The ##\textbf{identity function}## ##\text{id}_X:X\to X## is surely a monoid homomorphism and the usual ##\textbf{composite}## ##g\cdot f: X\to X## of two functions is a monoid homomorphism if ##f:X\to Y## and ##g:Y\to Z.##
##\textbf{(3)}## ##\textbf{Proposition 3:}## Given a family ##(A_i\mid i\in I)## of vector spaces, we define their ##\textbf{weak direct sum}## to be
$$\coprod_{i\in I}A_i=\{f\mid f:I\to \cup_{i \in I}A_i;f(i)\in A_i \text{
for each }i;\text{ and supp}(f)\text{ is finite}\}$$
considered as a subspace of ##\prod_{i\in I}A_i.## Then ##\coprod_{i\in I}A_i## together with the injection maps
##\text{in}_j:A_j\to \coprod_{i\in I}A_i:a_j\mapsto## the ##f## with ##f(i)=0## for ##i\neq j,## and with ##f(j)=a_j##
is a coproduct of ##(A_i)## in the category ##\textbf{Vect}.## (Category of vector spaces)
##\textbf{(4)}## ##\textbf{Assumed exercise:}##
A monoid ##X## is ##\textbf{abelian}## if ##xy=yx## for all ##x,y.## Let ##\textbf{Abm}## be the category of abelian monoids and monoid homomorphisms. Prove that products, equalizers and coequalizers can be constructed by mimicking these constructs in ##\textbf{Mon}## or ##\textbf{Grp}.## (category of abelian monoid or groups) Construct coproducts in ##\textbf{Abm}## by imitating the construction in ##\textbf{Vect}## (category of vector spaces)
Thank you in advance.