squexy said:
´
Could anyone tell me if the resolutions of these questions are correct?
View attachment 3754
Cosx = 4/3 - sin x
Six - 4/3 - Sin x = 0
2 Sinx = 4/3
Sinx = 4/6
Cosx = 4/3 - 4/6
Cosx = 8/6 - 4/6
Cosx = 4/6
View attachment 3755
G(x) = 5x + 1
5*(px+2)+1
5px + p = 5px + 10+ 1
p = 11
As an alternative to Question 1, it is possible to write a linear combination $\displaystyle \begin{align*} a\sin{(x)} + b\cos{(x)} = c\sin{ \left( x + \varphi \right) } \end{align*}$, where $\displaystyle \begin{align*} c = \sqrt{a^2 + b^2} \end{align*}$. Don't believe me? Well in your case, $\displaystyle \begin{align*} a = b = 1 \end{align*}$, so $\displaystyle \begin{align*} c = \sqrt{1^2 + 1^2} = \sqrt{2} \end{align*}$. Thus
$\displaystyle \begin{align*} \sqrt{2}\sin{ \left( x + \varphi \right) } &= \sin{(x)} + \cos{(x)} \\ \sqrt{2} \left[ \sin{(x)}\cos{(\varphi )} + \cos{(x)} \sin{ \left( \varphi \right) } \right] &= \sin{(x)} + \cos{(x)} \\ \sqrt{2}\sin{(x)}\cos{(\varphi )} + \sqrt{2}\cos{(x)}\sin{(\varphi )} &= \sin{(x)} + \cos{(x)} \end{align*}$
So that means $\displaystyle \begin{align*} \sqrt{2}\cos{ (\varphi )} = 1 \end{align*}$ and $\displaystyle \begin{align*} \sqrt{2}\sin{( \varphi )} = 1 \end{align*}$. It should be pretty obvious then that $\displaystyle \begin{align*} \varphi = \frac{\pi}{4} \end{align*}$.
Thus $\displaystyle \begin{align*} \sin{(x)} + \cos{(x)} = \sqrt{2} \sin{ \left( x + \frac{\pi}{4} \right) } \end{align*}$. So now we should be able to solve the problem...
$\displaystyle \begin{align*} \sin{(x)} + \cos{(x)} &= \frac{4}{3} \\ \sqrt{2} \sin{ \left( x + \frac{\pi}{4} \right) } &= \frac{4}{3} \\ \sin{ \left( x + \frac{\pi}{4} \right) } &= \frac{4}{3\,\sqrt{2}} \\ \sin{ \left( x + \frac{\pi}{4} \right) } &= \frac{ 4\,\sqrt{2}}{3 \cdot 2 } \\ \sin{ \left( x + \frac{\pi}{4} \right) } &= \frac{2\,\sqrt{2}}{3} \\ x + \frac{\pi}{4} &= \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \\ x &= \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } - \frac{\pi}{4} \end{align*}$
Now you should be able to find $\displaystyle \begin{align*} \sin{(x)} - \cos{(x)} \end{align*}$, but it will look absolutely horrible...
$\displaystyle \begin{align*} \sin{(x)} - \cos{(x)} &= \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } - \frac{\pi}{4} \right] } - \cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } - \frac{\pi}{4} \right] } \\ &= \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \cos{ \left( \frac{\pi}{4} \right) } - \cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \sin{ \left( \frac{\pi}{4} \right) } - \left\{ \cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \cos{ \left( \frac{\pi}{4} \right) } + \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \sin{ \left( \frac{\pi}{4} \right) } \right\} \\ &= \frac{2\,\sqrt{2}}{3} \cdot \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } - \left\{ \frac{1}{\sqrt{2}} \cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } + \frac{2\,\sqrt{2}}{3} \cdot \frac{1}{\sqrt{2}} \right\} \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}} \,\sqrt{ 1 - \left\{ \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \right\} ^2 } - \left( \frac{1}{\sqrt{2}} \,\sqrt{ 1 - \left\{ \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \right\} ^2 } + \frac{2}{3} \right) \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}}\,\sqrt{ 1 - \left( \frac{2\,\sqrt{2}}{3} \right) ^2 } - \left[ \frac{1}{\sqrt{2}} \,\sqrt{ 1 - \left( \frac{2\,\sqrt{2}}{3} \right) ^2 } + \frac{2}{3} \right] \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}}\,\sqrt{ 1 - \frac{8}{9} } - \left[ \frac{1}{\sqrt{2}}\,\sqrt{ 1 - \frac{8}{9} } + \frac{2}{3} \right] \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}} \,\sqrt{\frac{1}{9}} - \left[ \frac{1}{\sqrt{2}}\,\sqrt{\frac{1}{9}} + \frac{2}{3} \right] \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}}\cdot \frac{1}{3} - \frac{1}{\sqrt{2}}\cdot \frac{1}{3} - \frac{2}{3} \\ &= -\frac{2}{3\,\sqrt{2}} \\ &= -\frac{\sqrt{2}}{3} \end{align*}$