- #1
- 790
- 3
Hi All
Let's assume the Universe's topology is a standard hypersphere (i.e. it's finite) and it's only a bit over-dense (Ωo = 1.02 - 1.01.) Say it has a mass-energy break-down like our own, 27% matter and 73% cosmological constant. In that case how do we work out its current radius? Can it have a compact topology even with so much cosmological constant?
From what I've read an "open" Universe could still be finite - or have I misunderstood something?
Let's assume the Universe's topology is a standard hypersphere (i.e. it's finite) and it's only a bit over-dense (Ωo = 1.02 - 1.01.) Say it has a mass-energy break-down like our own, 27% matter and 73% cosmological constant. In that case how do we work out its current radius? Can it have a compact topology even with so much cosmological constant?
From what I've read an "open" Universe could still be finite - or have I misunderstood something?