MHB Cot(θ) = tan(2θ - 3π) find 0 < θ < 2π

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The equation $\cot(\theta) = \tan(2\theta - 3\pi)$ simplifies to $\cot(\theta) = \tan(2\theta)$, leading to the relationship $\frac{1}{\tan(\theta)} = \tan(2\theta)$. By applying the co-function identity and the periodicity of the tangent function, the solutions for $\theta$ are derived. The key results yield four angles: $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, and $\frac{11\pi}{6}$. Thus, the complete set of solutions for the equation within the interval $0 < \theta < 2\pi$ is established.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\cot{(\theta)}=\tan{(2\theta-3\pi)}$ find $0<\theta<2\pi$

From the periodic Formula $\tan{(\theta+\pi n)}=\tan{\theta}$

thus
$
\displaystyle
\cot{(\theta)}
=\tan{(2\theta)}
\Rightarrow
\frac{1}{\tan{\theta}}
=\tan{(2\theta)}
$

there are 6 answers to this, but stuck here
 
Mathematics news on Phys.org
I would stop at:

$$\cot(\theta)=\tan(2\theta)$$

Then, I would try combining the following:

Co-function identity:

$$\cot(\theta)=\tan\left(\frac{\pi}{2}-\theta \right)$$

Periodicity of tangent function:

$$\tan(\theta)=\tan(\theta+k\pi)$$ where $$k\in\mathbb{Z}$$

This will give you the six roots you desire.
 
by this I assume

$\displaystyle 2 \theta =\frac{\pi}{2}-\theta$
so
$\displaystyle
\theta=\frac{\pi}{6}$
then for $\displaystyle 0<\theta<2\pi $ using $\tan{(\theta+\pi n)}=\tan{\theta}$ for period
$$
\theta = \frac{\pi}{6}, \frac{7\pi}{6}
$$
or
$$30^o,210^o$$

but that is only 2 of them
 
You would actually have:

$$\theta=\frac{\pi}{2}-2\theta+k\pi$$

See what you get from that. :D
 
Hello, karush!

\cot \theta\:=\:\tan(2\theta-3\pi),\quad 0&lt;\theta&lt;2\pi
\tan(2\theta - 3\pi) \;=\;\frac{\tan(2\theta) - \tan(3\pi)}{1 + \tan(2\theta)\tan(3\pi)} \;=\;\tan(2\theta)

. . . . . . . . . . =\;\frac{2\tan\theta}{1-\tan^2\theta}

The equation becomes: .\frac{1}{\tan\theta} \;=\;\frac{2\tan\theta}{1-\tan^2\theta}

. . 1 - \tan^2\theta \:=\:2\tan^2\theta \quad\Rightarrow\quad 3\tan^2\theta \:=\:1

. . \tan^2\theta \:=\:\frac{1}{3} \quad\Rightarrow\quad \tan\theta \:=\:\pm\frac{1}{\sqrt{3}}

Therefore: .\theta \;=\;\frac{\pi}{6},\;\frac{5\pi}{6},\;\frac{7\pi}{6},\;\frac{11\pi}{6}
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K