Mike2
- 1,312
- 0
Thank you both: George Jones and hellfire,
It would seem as though there is a real difference in reference frames between us and distant objects. It is not objects moving in stationary space (with respect to us) that accounts for the recession and expansion of the universe. But their space (reference frame) itself is moving with respect to us.
As I understand it, that is exactly what is required to apply the Unruh effect - a frame of reference that is accelerating with respect to ours will feel a temperature whereas we would not. One question might be do these frames of reference have to be at the same physical location for the Unruh effect to apply? Or can they be separated by some distance?
I've looked into what might be the acceleration of space itself as the universe expands. The Hubble constant(?) is (71km/s +/- 4km/s)/Mpc. So to get the velocity that their reference frame (space) is moving wrt to us, just multipy the distance between us by the Hubble constant. OK, since this velocity is changing with distance (not time?), it would appear that this can be interpreted as an acceleration. But what is that accleration? So far we have:
r' = r*H
Then:
r'' = r'*H + r*H' But H'=0 (?)
substituting for r' with the above, then:
r'' = r*H2
There is no acceleration or velocity for points of space very near are own, but there is an acceleration for points at some distance from us, right? So the question is whether there would be an Unruh temperature associated with that acceleration. Thanks.
It would seem as though there is a real difference in reference frames between us and distant objects. It is not objects moving in stationary space (with respect to us) that accounts for the recession and expansion of the universe. But their space (reference frame) itself is moving with respect to us.
As I understand it, that is exactly what is required to apply the Unruh effect - a frame of reference that is accelerating with respect to ours will feel a temperature whereas we would not. One question might be do these frames of reference have to be at the same physical location for the Unruh effect to apply? Or can they be separated by some distance?
I've looked into what might be the acceleration of space itself as the universe expands. The Hubble constant(?) is (71km/s +/- 4km/s)/Mpc. So to get the velocity that their reference frame (space) is moving wrt to us, just multipy the distance between us by the Hubble constant. OK, since this velocity is changing with distance (not time?), it would appear that this can be interpreted as an acceleration. But what is that accleration? So far we have:
r' = r*H
Then:
r'' = r'*H + r*H' But H'=0 (?)
substituting for r' with the above, then:
r'' = r*H2
There is no acceleration or velocity for points of space very near are own, but there is an acceleration for points at some distance from us, right? So the question is whether there would be an Unruh temperature associated with that acceleration. Thanks.
Last edited: