Bob44
- 11
- 0
Scalar and vector potentials in Coulomb gauge
Assume Coulomb gauge so that
$$\nabla \cdot \mathbf{A}=0.\tag{1}$$
The scalar potential ##\phi## is described by Poisson's equation
$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$
which has the instantaneous general solution given by
$$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$
In Coulomb gauge the vector potential ##\mathbf{A}## is given by
$$\nabla^2\mathbf{A}-\frac{1}{c^2}\frac{\partial^2\mathbf{A}}{\partial t^2}=-\mu_0\mathbf{J}+\frac{1}{c^2}\nabla\frac{\partial\phi}{\partial t}.\tag{4}$$
We decompose the vector potential ##\mathbf{A}## into its transverse and longitudinal components
$$\mathbf{A}=\mathbf{A}_\perp+\mathbf{A}_\parallel.\tag{5}$$
We define the transverse current density ##\mathbf{J}_\perp## by subtracting off the longitudinal component ##\nabla \partial \phi/\partial t## from the total current density ##\mathbf{J}## to obtain
$$\mathbf{J}_\perp=\mathbf{J}-\varepsilon_0 \nabla \frac{\partial \phi}{\partial t}.\tag{6}$$
Therefore the transverse component of the vector potential ##\mathbf{A}_\perp## obeys the wave equation
$$\nabla^2\mathbf{A}_\perp-\frac{1}{c^2}\frac{\partial^2\mathbf{A}_\perp}{\partial t^2}=-\mu_0\mathbf{J}_\perp\tag{7}$$
which has the retarded general solution
$$\mathbf{A}_\perp=\frac{\mu_0}{4\pi}\int \frac{\mathbf{J}_\perp(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|}d^3r'\tag{8}$$
where
$$t_r=t-\frac{\mathbf{r}-\mathbf{r}'}{c}.\tag{9}$$
The longitudinal component of the vector potential ##\mathbf{A}_\parallel## obeys the Poisson equation
$$\nabla^2 \mathbf{A}_\parallel=-\frac{1}{c^2} \nabla \frac{\partial \phi}{\partial t}\tag{10}$$
which has the instantaneous general solution
$$\mathbf{A}_\parallel=\frac{1}{4\pi c^2}\int \frac{\nabla'(\partial\phi/\partial t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{11}$$
Point charge at the origin connected to a wire
Let us consider a time-dependent point charge ##q(t)## located at the origin, which is connected to a wire that carries current to or from the charge.
At any point from the origin the radial electric field ##\mathbf{E}_\parallel## is given by
$$\mathbf{E}_\parallel=-\nabla \phi - \frac{\partial \mathbf{A}_\parallel}{\partial t}\tag{12}.$$
We have
$$
\begin{eqnarray}
\phi(\mathbf{r},t)&=&\frac{1}{4\pi\varepsilon_0}\frac{q(t)}{r},\tag{13}\\
-\nabla \phi&=&\frac{1}{4\pi\varepsilon_0}\frac{q(t)}{r^2}\hat{\mathbf{r}},\tag{14}\\
\frac{\partial\phi}{\partial t}(\mathbf{r}',t)&=&\frac{1}{4\pi\varepsilon_0}\frac{\dot{q}(t)}{r'},\tag{15}\\
\nabla'\frac{\partial \phi}{\partial t}(\mathbf{r}',t)&=&-\frac{1}{4\pi\varepsilon_0}\frac{\dot{q}(t)}{r'^2}\hat{\mathbf{r}}'.\tag{16}
\end{eqnarray}
$$
Substituting eqn.##(16)## into eqn.##(11)## and using the standard Poisson integral of a radial gradient we obtain
$$
\begin{eqnarray}
\mathbf{A}_\parallel(\mathbf{r},t)&=&\frac{1}{4\pi\varepsilon_0}\frac{\dot{q}(t)}{c^2 r}\hat{\mathbf{r}},\tag{17}\\
-\frac{\partial \mathbf{A}_\parallel}{\partial t}&=&-\frac{1}{4\pi\varepsilon_0}\frac{\ddot{q}(t)}{c^2 r}\hat{\mathbf{r}}.\tag{18}
\end{eqnarray}
$$
Therefore by substituting eqn.##(14)## and eqn.##(18)## into eqn.##(12)## we find that the radial electric field ##\mathbf{E}_\parallel## is given by
$$\mathbf{E}_\parallel=\frac{1}{4\pi\varepsilon_0}\left(\frac{q(t)}{r^2}-\frac{\ddot{q}(t)}{c^2r}\right)\hat{\mathbf{r}}.\tag{19}$$
Does eqn.##(19)## violate causality since it is an instantaneous expression?
Assume Coulomb gauge so that
$$\nabla \cdot \mathbf{A}=0.\tag{1}$$
The scalar potential ##\phi## is described by Poisson's equation
$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$
which has the instantaneous general solution given by
$$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$
In Coulomb gauge the vector potential ##\mathbf{A}## is given by
$$\nabla^2\mathbf{A}-\frac{1}{c^2}\frac{\partial^2\mathbf{A}}{\partial t^2}=-\mu_0\mathbf{J}+\frac{1}{c^2}\nabla\frac{\partial\phi}{\partial t}.\tag{4}$$
We decompose the vector potential ##\mathbf{A}## into its transverse and longitudinal components
$$\mathbf{A}=\mathbf{A}_\perp+\mathbf{A}_\parallel.\tag{5}$$
We define the transverse current density ##\mathbf{J}_\perp## by subtracting off the longitudinal component ##\nabla \partial \phi/\partial t## from the total current density ##\mathbf{J}## to obtain
$$\mathbf{J}_\perp=\mathbf{J}-\varepsilon_0 \nabla \frac{\partial \phi}{\partial t}.\tag{6}$$
Therefore the transverse component of the vector potential ##\mathbf{A}_\perp## obeys the wave equation
$$\nabla^2\mathbf{A}_\perp-\frac{1}{c^2}\frac{\partial^2\mathbf{A}_\perp}{\partial t^2}=-\mu_0\mathbf{J}_\perp\tag{7}$$
which has the retarded general solution
$$\mathbf{A}_\perp=\frac{\mu_0}{4\pi}\int \frac{\mathbf{J}_\perp(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|}d^3r'\tag{8}$$
where
$$t_r=t-\frac{\mathbf{r}-\mathbf{r}'}{c}.\tag{9}$$
The longitudinal component of the vector potential ##\mathbf{A}_\parallel## obeys the Poisson equation
$$\nabla^2 \mathbf{A}_\parallel=-\frac{1}{c^2} \nabla \frac{\partial \phi}{\partial t}\tag{10}$$
which has the instantaneous general solution
$$\mathbf{A}_\parallel=\frac{1}{4\pi c^2}\int \frac{\nabla'(\partial\phi/\partial t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{11}$$
Point charge at the origin connected to a wire
Let us consider a time-dependent point charge ##q(t)## located at the origin, which is connected to a wire that carries current to or from the charge.
At any point from the origin the radial electric field ##\mathbf{E}_\parallel## is given by
$$\mathbf{E}_\parallel=-\nabla \phi - \frac{\partial \mathbf{A}_\parallel}{\partial t}\tag{12}.$$
We have
$$
\begin{eqnarray}
\phi(\mathbf{r},t)&=&\frac{1}{4\pi\varepsilon_0}\frac{q(t)}{r},\tag{13}\\
-\nabla \phi&=&\frac{1}{4\pi\varepsilon_0}\frac{q(t)}{r^2}\hat{\mathbf{r}},\tag{14}\\
\frac{\partial\phi}{\partial t}(\mathbf{r}',t)&=&\frac{1}{4\pi\varepsilon_0}\frac{\dot{q}(t)}{r'},\tag{15}\\
\nabla'\frac{\partial \phi}{\partial t}(\mathbf{r}',t)&=&-\frac{1}{4\pi\varepsilon_0}\frac{\dot{q}(t)}{r'^2}\hat{\mathbf{r}}'.\tag{16}
\end{eqnarray}
$$
Substituting eqn.##(16)## into eqn.##(11)## and using the standard Poisson integral of a radial gradient we obtain
$$
\begin{eqnarray}
\mathbf{A}_\parallel(\mathbf{r},t)&=&\frac{1}{4\pi\varepsilon_0}\frac{\dot{q}(t)}{c^2 r}\hat{\mathbf{r}},\tag{17}\\
-\frac{\partial \mathbf{A}_\parallel}{\partial t}&=&-\frac{1}{4\pi\varepsilon_0}\frac{\ddot{q}(t)}{c^2 r}\hat{\mathbf{r}}.\tag{18}
\end{eqnarray}
$$
Therefore by substituting eqn.##(14)## and eqn.##(18)## into eqn.##(12)## we find that the radial electric field ##\mathbf{E}_\parallel## is given by
$$\mathbf{E}_\parallel=\frac{1}{4\pi\varepsilon_0}\left(\frac{q(t)}{r^2}-\frac{\ddot{q}(t)}{c^2r}\right)\hat{\mathbf{r}}.\tag{19}$$
Does eqn.##(19)## violate causality since it is an instantaneous expression?