The electromagnetic field can carry waves, some of them are light, others are used in radio broadcast. These oscillatory waves are distinguished by their frequency. The usual pickup that we get from electric currents in the circuits in the walls of the building has a frequency of about 100...
I want to show that the action staying the same action after taking ##A^\mu \to A^\mu + \partial ^\mu \chi##, for the first term I suceeded in showing the invariance using the fact ##[\partial ^ \mu , \partial ^\nu]=0## but for the second term I'm getting: ##\epsilon^{\alpha\mu\nu}A_\alpha...
Hi, everyone. I just finished studying the principle on which a transformer works. It relies on Faraday's law of induction. And my high school physics book uses the following picture for illustration:
Roughly speaking, the...
I am reading Griffith's textbook on EM. There is a problem asking to find the force acting on the northern hemisphere by the southern hemisphere of a uniformly charged sphere.
The solution idea is to find the expression of the E field by Gauss's law and integrate the force over the northern...
So my idea was that to reach the equilibrium position, the final moment of force has to be 0 (so in the end the forces will “eliminate” each other). And I found the equation Fm=B*I*l*sinα, which should characterize the force, which affects wire with the current in a magnetic field, and Fleming’s...
The experiment consists of a large field coil (connected to a current source) surrounding a coplanar and coaxial small detector coil in the center of the field coil connected to the oscilloscope.
1. Matching Current v. Time Graphs to Oscilloscope Graphs
Example of one pair of graphs (I'll...
Summary:: Can anyone introduce an informative resource with solved examples for learning variation principle?
For example I cannot do the variation for the electromagnetic lagrangian when ##A_\mu J^\mu## added to the free lagrangian and also some other terms which are possible:
$$
L =...
Mary Boas attempts to explain this by pointing out that the situation cannot arise because charges will have to be placed individually, and in an order, and that order would represent the order we sum in. That at any point the unplaced infinite charges would form an infinite divergent series...
At first I take the uniformly distributed charge and then divide it by the area of the carpet to get the surface charge density σ
-10E-6 C / 8m^2 = σ = -1.25E-6C/m^2
Then I divide the surface charge density by 2e0 to get the electric field strength caused by the infinite plane...
The near-range magnetic field ##\vec{B}## of a point charge ##q## at distance ##\vec{r}##, moving at a non-relativistic velocity ##\vec{v}##, is given by
$$\vec{B}=\frac{q}{4\pi\epsilon_0c^2}\frac{\vec{v}\times\hat{r}}{r^2}.$$
Faraday's law of induction for the induced EMF ##V_c## in a coil...
Summary:: Suggest a geometry
Hello! I have difficulties with this question. It is translated from Swedish so if something's weird tell me.
The speakers in headphones often work with the help of magnetism, when a varying voltage is applied across a coil attached to the speaker membrane. The...
If so, what will I measure in the Ampermeter, the zero total current or the value of the conduction current?
I was thinking of the following example- a circuit consist of a current source, an Ampermeter, a switch, and a semiconductor. The semiconductor can have both conduction and displacement...
Purcell says that taking the surface integral of the magnetic field ##\textbf{B}## over the surfaces ##S_{1}, S_{2}, S_{3},...## below is a good way of finding the average of the volume integral of ##\textbf{B}## in the neighborhood of these surfaces.
More specifically, he says in page...
Can anyone please tell me why the torque on a circular current loop can be calculated by the equation below? In other words, what is the intuition for the formula? Thank you. (I modified my question to a particular case)
$$ \vec{\tau} = I \vec{A} \times \vec{B} $$
In my latest 10th grade physics lesson, we were learning about the refraction of light. I decided to share what I knew about why light slows down in a vacuum, which is, in short, because the electric field of the electromagnetic wave exerts a force on the charged electrons of a medium, which in...
Let r = position of the electron = 6mm - 36.8μm; λ = mean free path traversed.
Integrate E(r) = Q/(2πϵLr) between the two shells gives:
V = [Q/(2πϵL)]*log(r/(r-λ))
I know that the question is asking for the voltage at which the electron energy will get to 23eV, but i am unsure how to get rid...
I am required to find the direction of the electric field on the surface of a grounded conducting sphere in the proximity of a point charge ##+q##. The distance between the center of the sphere and the point charge is ##d## and using the method of images we find that the charge of the sphere is...
I need some rigorous introductory books on Electromagnetism, by rigorous I mean detailed and mathematical.
Many books that I have found don’t actually work out the field produced by current carrying toroid, solenoid or even some other simple electrostatic situations. They just write “by...
Summary:: I need to add references for several classical electromagnetism concepts, I would like to know which books deal with these concepts.
Recently a paper about classical electromagnetism that I had submitted was rejected, among other reasons because it contained many references to...
Hello!
In Optical fibers, let ##k_1## and ##k_2## be respectively the propagation constants in core and cladding, ##\beta## the propagation costant of a mode along the direction ##z##, ##a## the radius of the fiber. Using the normalized quantities ##u=a \sqrt{k_1^2 − \beta^2}## and ##w=a...
When we calculate the curl of magnetic field, that is the curl of Biot-Savart equation for magnetic field. Please consider these .
The working of last equation $$ \nabla \times \mathbf {B} = \frac...
I am trying to answer exercise 5 but I am not sure I understand what the hint is implying, differentiate with respect to ##p_\alpha## and ##p_\beta##, I have done this but nothing is clicking. Also, what is the relevance of the hint "the constraint ##p^\alpha p_\alpha = m^2c^2## can be ignored...
There was an old thread comparing the difficulty of classical mechanics and electromagnetism. The consensus was that electromagnetism is more difficult, and substantially so according to some. The thread was no longer open for replies, but it got me suspecting that we're comparing apples to...
Since it is stated that ##E'_x = E_x##, I am going to set a special case where ##z' = z = 0##, ##E_x## in (5.10) reduces to,
##E_x = \frac{1}{4 \pi \epsilon_0}\frac{Q}{x^2}##
However, ##E'_x## in (5.13) reduces to,
##E'_x = \frac{1}{4 \pi \epsilon_0}\frac{Q}{\gamma^2 x'^2}##
There is an...
I am having problem with part (b) finding the vector potential. More specifically when writing out the volume integral,
$$A = \frac{\mu_0}{4\pi r}\frac{dq}{dt}\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{?}\frac{1}{4\pi r'^2} r'^2sin\theta dr'd\theta d\phi$$
How do I integrate ##r'##?
The solution...
A square conducting loop of side length a is in a non-uniform magnetic field. The loop occupies the first quadrant of the xy plane, i.e. the space between the origin (x, y) = (0,0) and the point (x,y) = (a, a). The magnetic field is in the +z direction. Develop an expression for the magnitude of...