tylerscott
- 28
- 0
Homework Statement
A gauge transformation is defined so as to leave the fields invariant. The gauge transformations are such that \vec{A}=\vec{A'}+\nabla\Lambda and \Phi=\Phi'-\frac{\partial\Lambda}{\partial t}. Consider the Coulomb Gauge \nabla\cdot\vec{A}=0. Find out what properties the function \Lambda must satisfy in order for the Coulomb Gauge to be satisfied.
Homework Equations
Lorentz Gauge Condition
\nabla\vec{A}+\frac{1}{c^{2}}\frac{\partial\Phi}{\partial t}=0
The Attempt at a Solution
\nabla\cdot\vec{A}=\nabla\left(\vec{A'}+\nabla\Lambda\right)=0
\nabla\cdot\vec{A'}+\nabla^{2}\Lambda=0
so
\nabla\cdot\vec{A'}+\nabla^{2}\Lambda+\frac{1}{c^{2}}\frac{\partial }{\partial t}(\Phi'-\frac{\partial\Lambda}{\partial t})=0
and
\nabla\cdot\vec{A'}+\frac{1}{c^{2}}\frac{\partial\Phi'}{\partial t}=\frac{1}{c^{2}}\frac{\partial^{2}\Lambda}{\partial t^{2}}-\nabla^{2}\Lambda
So in order for these to be invariant, \frac{1}{c^{2}}\frac{\partial^{2}\Lambda}{\partial t^{2}}-\nabla^{2}\Lambda=0
So \Lambda must satisfy wave equation.
Now, I feel like I'm missing some of the properties of the gauge, so any help into more insight into \Lambda would be appreciated.