# What is Invariance: Definition and 475 Discussions

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.
The technical term for this transformation is a dilatation (also known as dilation), and the dilatations can also form part of a larger conformal symmetry.

In mathematics, scale invariance usually refers to an invariance of individual functions or curves. A closely related concept is self-similarity, where a function or curve is invariant under a discrete subset of the dilations. It is also possible for the probability distributions of random processes to display this kind of scale invariance or self-similarity.
In classical field theory, scale invariance most commonly applies to the invariance of a whole theory under dilatations. Such theories typically describe classical physical processes with no characteristic length scale.
In quantum field theory, scale invariance has an interpretation in terms of particle physics. In a scale-invariant theory, the strength of particle interactions does not depend on the energy of the particles involved.
In statistical mechanics, scale invariance is a feature of phase transitions. The key observation is that near a phase transition or critical point, fluctuations occur at all length scales, and thus one should look for an explicitly scale-invariant theory to describe the phenomena. Such theories are scale-invariant statistical field theories, and are formally very similar to scale-invariant quantum field theories.
Universality is the observation that widely different microscopic systems can display the same behaviour at a phase transition. Thus phase transitions in many different systems may be described by the same underlying scale-invariant theory.
In general, dimensionless quantities are scale invariant. The analogous concept in statistics are standardized moments, which are scale invariant statistics of a variable, while the unstandardized moments are not.

View More On Wikipedia.org
1. ### I Time dilation vs Differential aging vs Redshift

Hi, I would like to ask for a clarification about the terms time dilation vs differential aging vs gravitational redshit. As far as I can tell, time dilation is nothing but the rate of change of an object's proper time ##\tau## w.r.t. the coordinate time ##t## of a given coordinate chart (aka...
2. ### I Invariance of a tensor of order 2

Good morning friends of the Forum. For me it is difficult to geometrically imagine a tensor of order 2 and maybe that is why it is difficult for me to know, what remains invariant when making a change of coordinates of this tensor. The only thing I can think of it, is that since a tensor of...
3. ### I Alternative Ways to Realize Invariance: Lorentz Transformation

The Lorentz transformation ensures different inertial observers measure the same speed of light. Are there other transformations, or other ways to setup a "space-time" that also have this property of invariance? Is the Lorentz transformation the unique solution?
4. ### A Virial theorem and translational invariance

According to the virial theorem, $$\left\langle T\right\rangle =-{\frac {1}{2}}\,\sum _{k=1}^{N}{\bigl \langle }\mathbf {F} _{k}\cdot \mathbf {r} _{k}{\bigr \rangle }$$ where ##N## is the number of particles in the system and ##T## is the total kinetic energy. It is often claimed that this...
5. ### B Solving for the Nth divergence in any coordinate system

Preface We know that, in Cartesian Coordinates, $$\nabla f= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$$ and $$\nabla^2 f= \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y} + \frac{\partial^2 f}{\partial^2 z}$$ Generalizing...
6. ### I Solutions that break the Lorentz invariance...?

I was reading a discussion where some physicists participated* where the topic of Lorentz invariance violations occurring in cosmology is mentioned. There, they mention that we can imagine a Lorentz-violating solution to the cosmological equations. What do they mean by that? Can anyone specify...
7. ### I The invariance of the speed of light is not only a hypothesis?

hello Einstein assumed the invariance of the speed of light as an hyphotesis, while I was told that : "The speed of light need not have been postulated as an invariant." in other words the invariance of the speed of light could have been proven even regardless of the special relativity is it...
8. ### B Problem about postulate of the invariance of the speed of light

Hello, I have a problem with the postulate of the invariance of the speed of light. When we move away from a light source it is redshift, it is the sign that the relative velocity between us and the light source has changed. If a stationary observer observes the phenomenon, he will measure that...
9. ### A Symmetry & Invariance of Pions: π+, π0, π− and Other Mesons Explained

Pions are particles with spin 0 and they form an isospin triplet: π+, π0, π− (with the superscript indicating the electric charge). Their intrinsic parity is −1 and they are pseudoscalar mesons. In nature we also find other kind of mesons, like the ρ mesons, ρ+, ρ0 and ρ−. As pions, they also...
10. ### MHB Invariance of Asymmetry under Orthogonal Transformation

Show that the property of asymmetry is invariant under orthogonal similarity transformation
11. ### A Local phase invariance of complex scalar field in curved spacetime

I am stuck deriving the gauge field produced in curved spacetime for a complex scalar field. If the underlying spacetime changes, I would assume it would change the normal Lagrangian and the gauge field in the same way, so at first guess I would say the gauge field remains unchanged. If there...
12. ### I Klein Gordon Invariance in General Relativity

Hello! I'm starting to study curved QFT and am slightly confused about the invariance of the Klein Gordon Lagrangian under a linear diffeomorphism. This is $$L=\sqrt{-g}\left(g^{\mu\nu}\partial_\mu \phi \partial_\nu \phi-\frac{m^2}{2}\phi^2\right),$$ I don't see how ##g^{\mu\nu}\to...
13. ### A Noether's theorem time invariance -- mean value theorem use?

how does the first step use mean value theorem? I don't get it , can anyone explain , thanks.
14. ### I Lorentz Invariance of Q in Weinberg: Justifying Transformation

If ##\partial_{\alpha} J^{\alpha}(x) = 0## then ##Q \equiv \displaystyle{\int} d^3 x J^t(x)## is time-invariant. To show that if ##J^{\alpha}(x)## is a four-vector then ##Q## is also Lorentz-invariant, he re-writes it as \begin{align*} Q = \int d^4 x J^{\alpha}(x) \partial_{\alpha} H(n_{\beta}...

28. ### A Invariance of ##SO(3)## Lie group when expressed via Euler angles

I am trying to understand the properties of the ##SO(3)## Lie Group but when expressed via Euler angles instead of rotation matrix or quaternions. I am building an Invariant Extended Kalman Filter (IEKF), which exploits the invariance property of ##SO(3)## dynamics ##\mathbf{\dot{R}} =...
29. ### I Plotting polar equations and scale invariance

Hello, In the plane, using Cartesian coordinates ##x## and ##y##, an equation (or a function) is a relationship between the ##x## and ##y## variables expressed as ##y=f(x)##. The variable ##y## is usually the dependent variable while ##x## is the independent variable. The polar coordinates...
30. ### I Rotational invariance of cross product matrix operator

Given that the normal vector cross product is rotational invariant, that is $$\mathbf R(a\times b) = (\mathbf R a)\times(\mathbf R b),$$ where ##a, b \in \mathbb{R}^3## are two arbitrary (column) vectors and ##\mathbf R## is a 3x3 rotation matrix, and given the cross product matrix operator...
31. ### I Does Lorentz invariance imply Einstein's synchronization convention?

Hi, I've read a number of posts here on PF about Einstein's clock synchronization convention. In the context of SR we know the transformation law between inertial frame's coordinates is actually the Lorentz one. The invariant speed for Lorentz transformation is c (actually it coincides with...
32. ### A Gauge Invariance of Transverse Traceless Perturbation in Linearized Gravity

In linearized gravity we define the spatial traceless part of our perturbation ##h^{TT}_{ij}##. For some reason this part of the perturbation should be gauge invariant under the transformation $$h^{TT}_{ij} \rightarrow h^{TT}_{ij} - \partial_{i}\xi_{j} - \partial_{j}\xi_{i}$$ Which means that...
33. ### I A query regarding Rotational Invariance

We know that Bell States follow the Rotational Invariance property i.e. the probability of results on measurement of two entangled particles do not change if the initial measurement basis (say ##u##) is rotated by an angle θ to a new basis (to say ##v##). Lets take the Bell State ##\psi = \frac...
34. ### A Invariance of discrete Spectrum with respect a Darboux transformation

According to this this the Darboux transformation preserves the discrete spectrum of the Haniltonian in quantum mechanics. Is there a proof for this? My best guess is that it has to do with the fact that $$Q^{\pm}$$ are ladder operators but I'm not sure.
35. ### I Translation Invariance of Outer Measure .... Axler, Result 2.7 ....

I am reading Sheldon Axler's book: Measure, Integration & Real Analysis ... and I am focused on Chapter 2: Measures ... I need help with the proof of Result 2.7 ... Result 2.7 and its proof read as follows: In the above proof by Axler we read the following: " ... ... Thus ... ##\mid t +...