I'm trying to find a counterexample where [itex] \lim_{n \to +\infty} P(|X|>n) = 0 [/itex] but [itex]X \notin L[/itex] where [itex]L[/itex] is the lebesgue linear space.(adsbygoogle = window.adsbygoogle || []).push({});

[itex]∫|X|I(|X|>n)dp + ∫|X|I(|X|≤n)dp = ∫|X|dp [/itex] therefore

[itex]∫nI(|X|>n)dp + ∫|X|I(|X|)dp ≤ ∫|X|dp[/itex]

Suppose [itex]∫I(|X|>n)dp = 1/(n ln n) [/itex]

Clearly the hypothesis is satisfied because [itex] \lim_{n \to +\infty} P(|X|>n) = \lim_{n \to +\infty} ∫I(|X|>n)dp = \lim_{n \to +\infty} 1/( ln n) = 0[/itex]

But I'm not sure how to conclude [itex]∫|X| = ∞[/itex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Counterexample where X is not in the Lebesgue linear space.

**Physics Forums | Science Articles, Homework Help, Discussion**