MHB Counting problem involving numbered cards

AI Thread Summary
The discussion focuses on solving a counting problem involving nine numbered cards, specifically how to determine the number of different three-digit numbers that can be formed between 200 and 300. The cards include duplicates, which complicates the counting process. Users are encouraged to share their attempted solutions to receive more targeted help. The simplest approach suggested is to list all possible combinations that meet the criteria. The final answer provided is that there are 22 different numbers that can be formed.
Milly
Messages
21
Reaction score
0
How to solve ii (b) ? Thanks in advance.
 

Attachments

  • image.jpg
    image.jpg
    30.5 KB · Views: 106
Mathematics news on Phys.org
Hello, Milly! :D

I have given your thread a title that briefly describes the posted problem. A title like "Help :/" does not tell anyone viewing the thread listing anything about the nature of the question being asked, and it is assumed that help is being sought.

Can you post what you have tried so far, so that our helpers can see where you are stuck, or where you may be going wrong, and can offer better assistance?

Using good thread titles and showing effort are two of the things we ask from our users, as given in our http://mathhelpboards.com/rules/.
 
I actually tried out by using 5P2 but it didn't work.
 
Hello, Milly!

How to solve ii (b)?

7. Nine cards are numbered: 1, 2, 2, 3, 3, 4, 6, 6, 6.

(ii) Three of the nine cards are chosen and placed in a line,
. . .making a 3-digit number.

Find how many different numbers can be made in this way
(b) if the number is between 200 and 300.
The easiest solution is to simply list them.

. . \begin{array}{ccccc} 212 & 221 & 231 & 241 & 261 \\ 213 & 223 & 232 & 242 & 2 62 \\ 214 & 224 & 233 & 243 & 263 \\ 216 & 226 & 234 & 2 46 & 264 \\ && 236 && 266 \end{array}

Answer: 22
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top