MHB Counting problem involving numbered cards

Milly
Messages
21
Reaction score
0
How to solve ii (b) ? Thanks in advance.
 

Attachments

  • image.jpg
    image.jpg
    30.5 KB · Views: 103
Mathematics news on Phys.org
Hello, Milly! :D

I have given your thread a title that briefly describes the posted problem. A title like "Help :/" does not tell anyone viewing the thread listing anything about the nature of the question being asked, and it is assumed that help is being sought.

Can you post what you have tried so far, so that our helpers can see where you are stuck, or where you may be going wrong, and can offer better assistance?

Using good thread titles and showing effort are two of the things we ask from our users, as given in our http://mathhelpboards.com/rules/.
 
I actually tried out by using 5P2 but it didn't work.
 
Hello, Milly!

How to solve ii (b)?

7. Nine cards are numbered: 1, 2, 2, 3, 3, 4, 6, 6, 6.

(ii) Three of the nine cards are chosen and placed in a line,
. . .making a 3-digit number.

Find how many different numbers can be made in this way
(b) if the number is between 200 and 300.
The easiest solution is to simply list them.

. . \begin{array}{ccccc} 212 & 221 & 231 & 241 & 261 \\ 213 & 223 & 232 & 242 & 2 62 \\ 214 & 224 & 233 & 243 & 263 \\ 216 & 226 & 234 & 2 46 & 264 \\ && 236 && 266 \end{array}

Answer: 22
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top