Counting squares of NxM lattice

Click For Summary
To count the total number of squares in an NxM lattice, one can determine the number of possible positions for the lower-left corner of squares of varying sizes, from 1x1 up to NxN. For a 3x4 lattice, the calculations show there are 12 positions for 1x1 squares, 6 for 2x2 squares, and 2 for 3x3 squares, leading to a total of 20 squares. The formula to generalize this counting is given by the summation: ∑(N-k)(M-k) for k from 0 to N-1. This method effectively accounts for overlapping squares by focusing on unique positions for each square size. The discussion aims to simplify this concept for educational purposes, making it accessible for younger learners.
Medicol
Messages
223
Reaction score
54
This is not a quiz but I am thinking how to write down a simple math formula to count the total number of squares present in a lattice of NxM points for my 12 year old nephew ? He'll sure be happy if I could turn this into, say, a common sense for pupils like him. :biggrin:

For example,
In a 3x4 lattice there are 20 squares.
I first check 3x3 one (by omitting the last column 3x1) on the right and have
12+22+32 = 14 squares
then I check 3x3 one (after omitting the first column) on the right to obtain
12+22+32 = 14 squares

So there are 28 squares. But I have 2 columns overlapped between the two squares I have just checked. And I have no clue how to reason to leave out the overlapped part to acquire the correct result.
 
Mathematics news on Phys.org
Medicol said:
This is not a quiz but I am thinking how to write down a simple math formula to count the total number of squares present in a lattice of NxM points for my 12 year old nephew ? He'll sure be happy if I could turn this into, say, a common sense for pupils like him.
Without loss of generality, assume that M >= N.

Count how many 1x1 squares, how many 2x2 squares and so on up to how many NxN squares. Count those by counting the possible positions for their lower-left corner. For the 3x4 case...

There are 3x4 = 12 possible positions for the lower left corner of a 1x1 square
There are 2x3 = 6 possible positions for the lower left corner of a 2x2 square
There are 1x2 = 2 possible positions for the lower left corner of a 3x3 square.

##\sum_{k=0}^{N-1} (N-k)(M-k)##

But possibly you're way ahead of me and are trying to reduce that to closed form.
 
  • Like
Likes 1 person
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 68 ·
3
Replies
68
Views
12K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 10 ·
Replies
10
Views
6K
Replies
1
Views
7K
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K