I Counting Total Spin for N Two-Level Systems (TLS)

  • I
  • Thread starter Thread starter Haris
  • Start date Start date
  • Tags Tags
    Spin Spin 1/2
Haris
Messages
2
Reaction score
0
TL;DR Summary
I am having considerable trouble understanding the addition of spins. The context in which I am studying this is the Tavis-Cummings Model.
Statement:
"Assume that r and m mean total spin and projection of spin along z, respectively. For N-TLS the total spin (r) can assume N+1 to 1/2 or 0 spin depending on N being even or odd. For a fixed r the value of m varies from +j to -j in integer steps. R is the operator whose eigen-values are r. The basis choice is |r,m>."
Now then, if I intend to make a matrix pretaining to single transitions of the composite system, i align the states with fixed r. For fixed r I have 2m+1 states. When r=N/2 my states are N+1 as simple substitution verifies. However, when r=N/2 -1 the number of states are (N-1)^2. It gets weirder for N/2 -2

Questions:
1) Why is r =N/2 -1 valid as individual spin is half not 1.
2) The counting on main diagonals are pretty confusing. For each irrep of SU(2) there's 2m+1 states and that's fine. But the multiplicity of each state is entirely vague to me.

I have linked the original paper and the figure 1 is where the counting is shown.

1730022772893.png
 

Attachments

Physics news on Phys.org
Correction: its 2r+1 instead of 2m+1
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...

Similar threads

Replies
1
Views
1K
Replies
61
Views
5K
Replies
1
Views
1K
Replies
16
Views
2K
Replies
5
Views
1K
Replies
21
Views
3K
Replies
17
Views
2K
Back
Top