Coursework check: Fourier series, Coefficients

Click For Summary
SUMMARY

The discussion focuses on calculating the Fourier series coefficients, specifically Ck, for a piecewise function defined by constants a and b. The coefficients are derived using the formula Ck = (1/T) ∫ f(t) e^(-jk2πt/T) dt, with the integration performed over two intervals. The results indicate that Ck equals zero for even k (k=2l) and Ck = (j/(2l+1)π)(a-b) for odd k (k=2l+1). The user requests verification of their calculations and guidance on finding the coefficients an and bn.

PREREQUISITES
  • Understanding of Fourier series and coefficients
  • Familiarity with complex exponentials and integration techniques
  • Knowledge of LaTeX for mathematical typesetting
  • Basic concepts of piecewise functions
NEXT STEPS
  • Study the derivation of Fourier series coefficients in detail
  • Learn how to compute an and bn coefficients for Fourier series
  • Explore the application of Fourier series in signal processing
  • Practice using LaTeX for mathematical expressions and documentation
USEFUL FOR

Students and educators in mathematics or engineering fields, particularly those studying Fourier analysis and signal processing techniques.

Bassalisk
Messages
946
Reaction score
2

Homework Statement


[PLAIN]http://pokit.org/get/d9a4a8542c2acdfedbb1038292f6817b.jpg

Find the coefficients of this function Ck

Homework Equations


The Attempt at a Solution



\begin{align}\Large C_{k}=\frac{1}{T}\cdot \int_{-T/2}^{T/2} f(t)\cdot e^{\frac{-jk2\pi t}{T}}dt=\frac{1}{T}\cdot \int_{-T/2}^{0} a\cdot e^{\frac{-jk2\pi t}{T}}dt+\frac{1}{T}\cdot \int_{0}^{T/2} b\cdot e^{\frac{-jk2\pi t}{T}}dt = \\ <br /> <br /> \Large=\frac{1}{T}\cdot a\left[\frac{e^{\frac{-jk2\pi t}{T}}}{\frac{-jk2\pi}{T}}\right]_{-T/2}^{0}+\frac{1}{T}\cdot b\left[\frac{e^{\frac{-jk2\pi t}{T}}}{\frac{-jk2\pi}{T}}\right]_{0}^{T/2}=<br /> <br /> \frac{j\cdot a}{T}\cdot \frac{e^{0}}{\frac{k2\pi}{T}}-\frac{j\cdot a}{T}\cdot \frac{e^{jk\pi}}{\frac{k2\pi}{T}}+\frac{j\cdot b}{T}\cdot \frac{e^{-jk\pi}}{\frac{k2\pi}{T}}-\frac{j\cdot b}{T}\cdot \frac{e^{0}}{\frac{k2\pi}{T}}= \\ <br /> <br /> \Large=\frac{j}{T\cdot\frac{k2\pi}{T}}\cdot\left(a-a\cdot e^{jk\pi}+b\cdot e^{-jk\pi}-b\right)=|| e^{jk\pi}=(-1)^{k}; e^{-jk\pi}=\frac{1}{(-1)^{k}}=(-1)^{k}||= \\ \Large\frac{j}{T\cdot\frac{k2\pi}{T}}\cdot\left(a-b-(-1)^{k}(a-b)\right)=<br /> \frac{j}{k2\pi}\cdot\left((a-b)(1-(-1)^k)\right)\end{align}

For k=2l;
\left((a-b)(1-(-1)^k)\right)=0; C_k = 0

For k=2l+1;

\left((a-b)(1-(-1)^k)\right)=2(a-b); C_k = \frac{j\cdot 2}{(2l+1)2\pi}\cdot (a-b)=\frac{j}{(2l+1)\pi}\cdot (a-b)

Somebody please check this.How do I find bn and an.
 
Last edited by a moderator:
Physics news on Phys.org
bump

Took me half an hour to write this in LaTex please somebody :/
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
969