Sebas4
- 13
- 2
- TL;DR Summary
- Does the annihilation/creation operator on the complex exponent?
Hey, I have a short question.
The quantized field in Schrödinger picture is given by:
\hat{\phi} \left(\textbf{x}\right) =\int \frac{d^{3}p}{\left(2\pi\right)^3} \frac{1}{\sqrt{\omega_{2\textbf{p}}}}\left(\hat{a}_{\textbf{p}}e^{i\textbf{p} \cdot \textbf{x}} + \hat{a}^{\dagger}_{\textbf{p}}e^{-i\textbf{p} \cdot \textbf{x}}\right)
My question is, does the the annihilation \hat{a}_{\textbf{p}} and creation \hat{a}^{\dagger}_{\textbf{p}} operator act on e^{i\textbf{p} \cdot \textbf{x}} and e^{-i\textbf{p} \cdot \textbf{x}} respectively? In other words: does the annihilation/creation operator on the complex exponent?
The quantized field in Schrödinger picture is given by:
\hat{\phi} \left(\textbf{x}\right) =\int \frac{d^{3}p}{\left(2\pi\right)^3} \frac{1}{\sqrt{\omega_{2\textbf{p}}}}\left(\hat{a}_{\textbf{p}}e^{i\textbf{p} \cdot \textbf{x}} + \hat{a}^{\dagger}_{\textbf{p}}e^{-i\textbf{p} \cdot \textbf{x}}\right)
My question is, does the the annihilation \hat{a}_{\textbf{p}} and creation \hat{a}^{\dagger}_{\textbf{p}} operator act on e^{i\textbf{p} \cdot \textbf{x}} and e^{-i\textbf{p} \cdot \textbf{x}} respectively? In other words: does the annihilation/creation operator on the complex exponent?
Last edited: