Graduate Creation and annihilation operator

  • Thread starter Thread starter Sebas4
  • Start date Start date
  • Tags Tags
    Operator Qft
Sebas4
Messages
13
Reaction score
2
TL;DR
Does the annihilation/creation operator on the complex exponent?
Hey, I have a short question.
The quantized field in Schrödinger picture is given by:
\hat{\phi} \left(\textbf{x}\right) =\int \frac{d^{3}p}{\left(2\pi\right)^3} \frac{1}{\sqrt{\omega_{2\textbf{p}}}}\left(\hat{a}_{\textbf{p}}e^{i\textbf{p} \cdot \textbf{x}} + \hat{a}^{\dagger}_{\textbf{p}}e^{-i\textbf{p} \cdot \textbf{x}}\right)

My question is, does the the annihilation \hat{a}_{\textbf{p}} and creation \hat{a}^{\dagger}_{\textbf{p}} operator act on e^{i\textbf{p} \cdot \textbf{x}} and e^{-i\textbf{p} \cdot \textbf{x}} respectively? In other words: does the annihilation/creation operator on the complex exponent?
 
Last edited:
Physics news on Phys.org
Sebas4 said:
does the the annihilation a^p and creation a^p† operator act on eip⋅x and e−ip⋅x respectively?

No.
 
Well, it does in the sense that ##a## and ##a^\dagger## commute with these factors.
 
No, they don't. The creation and annihilation operators are linear operators defined in the Fock space. The expeonential functions are numbers; ##\vec{x}, \vec{p} \in \mathbb{R}^3##.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K