A Creation and annihilation operator

  • A
  • Thread starter Thread starter Sebas4
  • Start date Start date
  • Tags Tags
    Operator Qft
Sebas4
Messages
13
Reaction score
2
TL;DR Summary
Does the annihilation/creation operator on the complex exponent?
Hey, I have a short question.
The quantized field in Schrödinger picture is given by:
\hat{\phi} \left(\textbf{x}\right) =\int \frac{d^{3}p}{\left(2\pi\right)^3} \frac{1}{\sqrt{\omega_{2\textbf{p}}}}\left(\hat{a}_{\textbf{p}}e^{i\textbf{p} \cdot \textbf{x}} + \hat{a}^{\dagger}_{\textbf{p}}e^{-i\textbf{p} \cdot \textbf{x}}\right)

My question is, does the the annihilation \hat{a}_{\textbf{p}} and creation \hat{a}^{\dagger}_{\textbf{p}} operator act on e^{i\textbf{p} \cdot \textbf{x}} and e^{-i\textbf{p} \cdot \textbf{x}} respectively? In other words: does the annihilation/creation operator on the complex exponent?
 
Last edited:
Physics news on Phys.org
Sebas4 said:
does the the annihilation a^p and creation a^p† operator act on eip⋅x and e−ip⋅x respectively?

No.
 
Well, it does in the sense that ##a## and ##a^\dagger## commute with these factors.
 
No, they don't. The creation and annihilation operators are linear operators defined in the Fock space. The expeonential functions are numbers; ##\vec{x}, \vec{p} \in \mathbb{R}^3##.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top