A Creation and annihilation operator

  • A
  • Thread starter Thread starter Sebas4
  • Start date Start date
  • Tags Tags
    Operator Qft
Sebas4
Messages
13
Reaction score
2
TL;DR Summary
Does the annihilation/creation operator on the complex exponent?
Hey, I have a short question.
The quantized field in Schrödinger picture is given by:
\hat{\phi} \left(\textbf{x}\right) =\int \frac{d^{3}p}{\left(2\pi\right)^3} \frac{1}{\sqrt{\omega_{2\textbf{p}}}}\left(\hat{a}_{\textbf{p}}e^{i\textbf{p} \cdot \textbf{x}} + \hat{a}^{\dagger}_{\textbf{p}}e^{-i\textbf{p} \cdot \textbf{x}}\right)

My question is, does the the annihilation \hat{a}_{\textbf{p}} and creation \hat{a}^{\dagger}_{\textbf{p}} operator act on e^{i\textbf{p} \cdot \textbf{x}} and e^{-i\textbf{p} \cdot \textbf{x}} respectively? In other words: does the annihilation/creation operator on the complex exponent?
 
Last edited:
Physics news on Phys.org
Sebas4 said:
does the the annihilation a^p and creation a^p† operator act on eip⋅x and e−ip⋅x respectively?

No.
 
Well, it does in the sense that ##a## and ##a^\dagger## commute with these factors.
 
No, they don't. The creation and annihilation operators are linear operators defined in the Fock space. The expeonential functions are numbers; ##\vec{x}, \vec{p} \in \mathbb{R}^3##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top