Hi,(adsbygoogle = window.adsbygoogle || []).push({});

This is a question regarding Example 3.6 in Section 3.5 (p.35) of 'QFT for the Gifted Amateur' by Lancaster & Blundell.

Given, [itex] [a^{\dagger}_\textbf{p}, a_\textbf{p'}] = \delta^{(3)}(\textbf{p} - \textbf{p'}) [/itex]. This I understand. The operators create/destroy particles in the momentum state p and p'.

However, the authors use this commutator in example 3.6 to calculate [itex] \langle\textbf{p}|\textbf{p'}\rangle [/itex] as follows:

[itex] \langle\textbf{p}|\textbf{p'}\rangle = \langle0| a_\textbf{p}a^{\dagger}_\textbf{p'} |0\rangle [/itex]

[itex] \hspace{12mm} = \langle 0| [\delta^{(3)}(\textbf{p} - \textbf{p'}) \pm a^{\dagger}_\textbf{p'} a_\textbf{p}]| 0\rangle [/itex]

[itex] \hspace{12mm} = \delta^{(3)}(\textbf{p} - \textbf{p'}) [/itex]

I understand the second step too; +/- for bosons/fermions depending on whether a commutator or anticommutator is used. It's the third and last step that I don't understand. How does that follow from the second?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Commutator of creation/annihilation operators (continuum limit)

**Physics Forums | Science Articles, Homework Help, Discussion**