- #1

- 461

- 0

[tex]\vec{r} = \left( \begin{array}{ccc}c*t & x & y & z \end{array} \right)[/tex]

[tex]\vec{v} = \left( \begin{array}{ccc}c & vx & vy & vz \end{array} \right)[/tex]

[tex]\vec{v} \times \vec{r} = ?[/tex]

[tex][/tex]

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Philosophaie
- Start date

- #1

- 461

- 0

[tex]\vec{r} = \left( \begin{array}{ccc}c*t & x & y & z \end{array} \right)[/tex]

[tex]\vec{v} = \left( \begin{array}{ccc}c & vx & vy & vz \end{array} \right)[/tex]

[tex]\vec{v} \times \vec{r} = ?[/tex]

[tex][/tex]

- #2

UltrafastPED

Science Advisor

Gold Member

- 1,912

- 216

See http://en.wikipedia.org/wiki/Cross_product#Cross_product_as_an_exterior_product

What is the purpose of your proposed construction?

- #3

WannabeNewton

Science Advisor

- 5,800

- 536

Actually it's also well defined non-trivially for 7 dimensions.

- #4

- 461

- 0

The triple product is:[tex]v \times r = \bar{x}*(vy*z-vz*y) + \bar{y}*(vz*x-vx*z) + \bar{z}*(vx*y-vy*x)[/tex]

- #5

UltrafastPED

Science Advisor

Gold Member

- 1,912

- 216

Still not clear what you are trying to accomplish with the 4-vectors here.

- #6

Office_Shredder

Staff Emeritus

Science Advisor

Gold Member

- 4,409

- 499

If you give the context under which you want to ask this kind of question, we can probably identify what you actually want to do with your two vectors.

- #7

phyzguy

Science Advisor

- 4,787

- 1,742

- #8

- 461

- 0

[tex]\vec{v} \times \vec{r} = 2*(v_z*c*t-c*z)*\bar{x}\bar{y}+2*(v_y*c*t-c*y)*\bar{x}\bar{z}+2*(v_x*c*t-c*x)*\bar{y}\bar{z}+2*\bar{t}*(\bar{x}*(v_x*y-y-v_y*x)+\bar{y}*(v_z*x-v_x*z)+\bar{z}*(v_x*y-v_y*x))[/tex]

- #9

- 15,393

- 686

- #10

- 461

- 0

- #11

WannabeNewton

Science Advisor

- 5,800

- 536

Share: