- #1
Mr Davis 97
- 1,462
- 44
I am trying to derive the law of signs from the cross product.
First, we have three vectors ##\vec{A} ~\vec{B} ~\vec{C}## such that ##\vec{A} + \vec{B} + \vec{C} = 0##. This creates a triangle. Then, we label the angles opposite the respective sides as a, b, and c. I am not sure where to go from here... We could take the cross product of each combination of ##\vec{A}## and ##\vec{B}##, but these cross products aren't necessarily equal, so can't set them equal to derive the law of sines... Any help would be appreciated.
First, we have three vectors ##\vec{A} ~\vec{B} ~\vec{C}## such that ##\vec{A} + \vec{B} + \vec{C} = 0##. This creates a triangle. Then, we label the angles opposite the respective sides as a, b, and c. I am not sure where to go from here... We could take the cross product of each combination of ##\vec{A}## and ##\vec{B}##, but these cross products aren't necessarily equal, so can't set them equal to derive the law of sines... Any help would be appreciated.