Cube Root Challenge: Prove Inequality

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Cube Root
Click For Summary
SUMMARY

The discussion centers on proving the inequality $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}$. Participants agree on the simplicity of the proof, with one user mentioning the application of the Arithmetic Mean-Geometric Mean Inequality (AM-GM) to establish that $x>\dfrac{31}{9}$. The consensus is that the problem is straightforward and essential for understanding cube roots and inequalities.

PREREQUISITES
  • Understanding of cube roots and their properties
  • Familiarity with the Arithmetic Mean-Geometric Mean Inequality (AM-GM)
  • Basic algebraic manipulation skills
  • Knowledge of inequalities in mathematics
NEXT STEPS
  • Study the proof techniques for inequalities in algebra
  • Explore the applications of the AM-GM Inequality in various mathematical contexts
  • Learn about cube root functions and their graphical representations
  • Investigate advanced inequality proofs and their significance in mathematical analysis
USEFUL FOR

Mathematics students, educators, and anyone interested in improving their skills in algebraic inequalities and cube root properties.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}$
 
Mathematics news on Phys.org
anemone said:
Prove $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}----(1)$
my solution :
if (1) is true then cube and rearrange it we get :
$31<9(\sqrt[3]{9}+\sqrt[3]{3})<32$
or $31<9(x^2+x)<32$
or $31<9x(x+1)<32---(2)$
here we let $x=\sqrt[3]{3}>1$
if $1.44<x=\sqrt[3]{3}<1.45 $ then both sides of (2)will be satisfied
checking wih calculator $\sqrt[3]{3}\approx 1.44225$
in fact we can apply $AP>GP$ to both sides of (2) and get the same result
 
Last edited:
Thanks Albert for participating...

I think you have to explicitly prove that $1.44<x=\sqrt[3]{3}<1.45 $ is true to complete your proof...:)
 
anemone said:
Thanks Albert for participating...

I think you have to explicitly prove that $1.44<x=\sqrt[3]{3}<1.45 $ is true to complete your proof...:)
it is easy :
$1.44^3=2.985984<3<1.45^3=3.048625$
[TABLE="width: 54"]
[TR]
[TD="width: 72, bgcolor: transparent, align: right"][/TD]
[/TR]
[TR]
[TD="bgcolor: transparent, align: right"][/TD]
[/TR]
[/TABLE]
 
Last edited by a moderator:
Albert said:
it is easy :
$1.44^3=2.985984<3<1.45^3=3.048625$

Yes, it's easy and it's necessary. :D

My solution:

Let $x= \sqrt[3]{9} +\sqrt[3]{3}$, cube the inequality and rearrange, we have to prove $\dfrac{31}{9}\lt x \lt \dfrac{32}{9}$, but note that

$9(20^3)=72000\gt 41^3=68921$, this gives $\sqrt[3]{9} \gt \dfrac{41}{20}$ and

$3(25^3)=46875\gt 36^3=46656$, this gives $\sqrt[3]{3} \gt \dfrac{36}{25}$, so $x>\dfrac{41}{20}+\dfrac{36}{25}=3\dfrac{49}{100}>\dfrac{31}{9}$

Also,

$9(10^3)=9000< 21^3=9261$, this gives $\sqrt[3]{9} < \dfrac{21}{10}$ and

$3(20^3)=24000< 29^3=24389$, this gives $\sqrt[3]{3}<\dfrac{29}{20}$, so $x<\dfrac{21}{20}+\dfrac{29}{20}=2\dfrac{1}{2}<\dfrac{32}{9}$

so we're done.
 
anemone said:
Yes, it's easy and it's necessary. :D

My solution:

Let $x= \sqrt[3]{9} +\sqrt[3]{3}$, cube the inequality and rearrange, we have to prove $\dfrac{31}{9}\lt x \lt \dfrac{32}{9}$, but note that

$9(20^3)=72000\gt 41^3=68921$, this gives $\sqrt[3]{9} \gt \dfrac{41}{20}$ and

$3(25^3)=46875\gt 36^3=46656$, this gives $\sqrt[3]{3} \gt \dfrac{36}{25}$, so $x>\dfrac{41}{20}+\dfrac{36}{25}=3\dfrac{49}{100}>\dfrac{31}{9}$

Also,

$9(10^3)=9000< 21^3=9261$, this gives $\sqrt[3]{9} < \dfrac{21}{10}$ and

$3(20^3)=24000< 29^3=24389$, this gives $\sqrt[3]{3}<\dfrac{29}{20}$, so $x<\dfrac{21}{20}+\dfrac{29}{20}=2\dfrac{1}{2}<\dfrac{32}{9}$

so we're done.
I will use $AP>GP$ to prove $x>\dfrac{31}{9}$
let :$x= \sqrt[3]{9} +\sqrt[3]{3}$
$x>2\sqrt 3>\dfrac {31}{9}$
for $\sqrt 3>1.73>\dfrac{31}{18}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
12K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
4K