MHB Cube Root Challenge: Prove Inequality

AI Thread Summary
The discussion centers on proving the inequality $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}$. Participants agree that the proof is straightforward, with one user mentioning the use of the arithmetic mean-geometric mean inequality (AM-GM) to establish that $x>\dfrac{31}{9}$. The conversation emphasizes the necessity of the proof, indicating a shared understanding of its importance. Overall, the participants are engaged in mathematical reasoning to validate the inequality. The discussion highlights both the simplicity and significance of the proof in the context of cube roots.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}$
 
Mathematics news on Phys.org
anemone said:
Prove $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}----(1)$
my solution :
if (1) is true then cube and rearrange it we get :
$31<9(\sqrt[3]{9}+\sqrt[3]{3})<32$
or $31<9(x^2+x)<32$
or $31<9x(x+1)<32---(2)$
here we let $x=\sqrt[3]{3}>1$
if $1.44<x=\sqrt[3]{3}<1.45 $ then both sides of (2)will be satisfied
checking wih calculator $\sqrt[3]{3}\approx 1.44225$
in fact we can apply $AP>GP$ to both sides of (2) and get the same result
 
Last edited:
Thanks Albert for participating...

I think you have to explicitly prove that $1.44<x=\sqrt[3]{3}<1.45 $ is true to complete your proof...:)
 
anemone said:
Thanks Albert for participating...

I think you have to explicitly prove that $1.44<x=\sqrt[3]{3}<1.45 $ is true to complete your proof...:)
it is easy :
$1.44^3=2.985984<3<1.45^3=3.048625$
[TABLE="width: 54"]
[TR]
[TD="width: 72, bgcolor: transparent, align: right"][/TD]
[/TR]
[TR]
[TD="bgcolor: transparent, align: right"][/TD]
[/TR]
[/TABLE]
 
Last edited by a moderator:
Albert said:
it is easy :
$1.44^3=2.985984<3<1.45^3=3.048625$

Yes, it's easy and it's necessary. :D

My solution:

Let $x= \sqrt[3]{9} +\sqrt[3]{3}$, cube the inequality and rearrange, we have to prove $\dfrac{31}{9}\lt x \lt \dfrac{32}{9}$, but note that

$9(20^3)=72000\gt 41^3=68921$, this gives $\sqrt[3]{9} \gt \dfrac{41}{20}$ and

$3(25^3)=46875\gt 36^3=46656$, this gives $\sqrt[3]{3} \gt \dfrac{36}{25}$, so $x>\dfrac{41}{20}+\dfrac{36}{25}=3\dfrac{49}{100}>\dfrac{31}{9}$

Also,

$9(10^3)=9000< 21^3=9261$, this gives $\sqrt[3]{9} < \dfrac{21}{10}$ and

$3(20^3)=24000< 29^3=24389$, this gives $\sqrt[3]{3}<\dfrac{29}{20}$, so $x<\dfrac{21}{20}+\dfrac{29}{20}=2\dfrac{1}{2}<\dfrac{32}{9}$

so we're done.
 
anemone said:
Yes, it's easy and it's necessary. :D

My solution:

Let $x= \sqrt[3]{9} +\sqrt[3]{3}$, cube the inequality and rearrange, we have to prove $\dfrac{31}{9}\lt x \lt \dfrac{32}{9}$, but note that

$9(20^3)=72000\gt 41^3=68921$, this gives $\sqrt[3]{9} \gt \dfrac{41}{20}$ and

$3(25^3)=46875\gt 36^3=46656$, this gives $\sqrt[3]{3} \gt \dfrac{36}{25}$, so $x>\dfrac{41}{20}+\dfrac{36}{25}=3\dfrac{49}{100}>\dfrac{31}{9}$

Also,

$9(10^3)=9000< 21^3=9261$, this gives $\sqrt[3]{9} < \dfrac{21}{10}$ and

$3(20^3)=24000< 29^3=24389$, this gives $\sqrt[3]{3}<\dfrac{29}{20}$, so $x<\dfrac{21}{20}+\dfrac{29}{20}=2\dfrac{1}{2}<\dfrac{32}{9}$

so we're done.
I will use $AP>GP$ to prove $x>\dfrac{31}{9}$
let :$x= \sqrt[3]{9} +\sqrt[3]{3}$
$x>2\sqrt 3>\dfrac {31}{9}$
for $\sqrt 3>1.73>\dfrac{31}{18}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
9
Views
11K
Replies
2
Views
1K
Replies
6
Views
2K
Replies
7
Views
2K
Back
Top