MHB Cube Root Challenge: Prove Inequality

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}$
 
Mathematics news on Phys.org
anemone said:
Prove $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}----(1)$
my solution :
if (1) is true then cube and rearrange it we get :
$31<9(\sqrt[3]{9}+\sqrt[3]{3})<32$
or $31<9(x^2+x)<32$
or $31<9x(x+1)<32---(2)$
here we let $x=\sqrt[3]{3}>1$
if $1.44<x=\sqrt[3]{3}<1.45 $ then both sides of (2)will be satisfied
checking wih calculator $\sqrt[3]{3}\approx 1.44225$
in fact we can apply $AP>GP$ to both sides of (2) and get the same result
 
Last edited:
Thanks Albert for participating...

I think you have to explicitly prove that $1.44<x=\sqrt[3]{3}<1.45 $ is true to complete your proof...:)
 
anemone said:
Thanks Albert for participating...

I think you have to explicitly prove that $1.44<x=\sqrt[3]{3}<1.45 $ is true to complete your proof...:)
it is easy :
$1.44^3=2.985984<3<1.45^3=3.048625$
[TABLE="width: 54"]
[TR]
[TD="width: 72, bgcolor: transparent, align: right"][/TD]
[/TR]
[TR]
[TD="bgcolor: transparent, align: right"][/TD]
[/TR]
[/TABLE]
 
Last edited by a moderator:
Albert said:
it is easy :
$1.44^3=2.985984<3<1.45^3=3.048625$

Yes, it's easy and it's necessary. :D

My solution:

Let $x= \sqrt[3]{9} +\sqrt[3]{3}$, cube the inequality and rearrange, we have to prove $\dfrac{31}{9}\lt x \lt \dfrac{32}{9}$, but note that

$9(20^3)=72000\gt 41^3=68921$, this gives $\sqrt[3]{9} \gt \dfrac{41}{20}$ and

$3(25^3)=46875\gt 36^3=46656$, this gives $\sqrt[3]{3} \gt \dfrac{36}{25}$, so $x>\dfrac{41}{20}+\dfrac{36}{25}=3\dfrac{49}{100}>\dfrac{31}{9}$

Also,

$9(10^3)=9000< 21^3=9261$, this gives $\sqrt[3]{9} < \dfrac{21}{10}$ and

$3(20^3)=24000< 29^3=24389$, this gives $\sqrt[3]{3}<\dfrac{29}{20}$, so $x<\dfrac{21}{20}+\dfrac{29}{20}=2\dfrac{1}{2}<\dfrac{32}{9}$

so we're done.
 
anemone said:
Yes, it's easy and it's necessary. :D

My solution:

Let $x= \sqrt[3]{9} +\sqrt[3]{3}$, cube the inequality and rearrange, we have to prove $\dfrac{31}{9}\lt x \lt \dfrac{32}{9}$, but note that

$9(20^3)=72000\gt 41^3=68921$, this gives $\sqrt[3]{9} \gt \dfrac{41}{20}$ and

$3(25^3)=46875\gt 36^3=46656$, this gives $\sqrt[3]{3} \gt \dfrac{36}{25}$, so $x>\dfrac{41}{20}+\dfrac{36}{25}=3\dfrac{49}{100}>\dfrac{31}{9}$

Also,

$9(10^3)=9000< 21^3=9261$, this gives $\sqrt[3]{9} < \dfrac{21}{10}$ and

$3(20^3)=24000< 29^3=24389$, this gives $\sqrt[3]{3}<\dfrac{29}{20}$, so $x<\dfrac{21}{20}+\dfrac{29}{20}=2\dfrac{1}{2}<\dfrac{32}{9}$

so we're done.
I will use $AP>GP$ to prove $x>\dfrac{31}{9}$
let :$x= \sqrt[3]{9} +\sqrt[3]{3}$
$x>2\sqrt 3>\dfrac {31}{9}$
for $\sqrt 3>1.73>\dfrac{31}{18}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
1
Views
998
Replies
9
Views
11K
Replies
2
Views
1K
Replies
6
Views
2K
Replies
7
Views
2K
Back
Top