Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Cube roots of a complex number

  1. Oct 28, 2006 #1
    hi,
    is there any way to find the cube roots of a complex number WITHOUT converting it into the polar form? i am asking this because we can find the square root of a complex number without converting it. i was just wondering whether there is such a method for finding cube roots too.
    i was trying to find the cube root of 110 + 74i

    thanks in advance to anyone who can help.
     
  2. jcsd
  3. Oct 28, 2006 #2

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    There is a cubic formula, same as a quadratic, if that's what you mean. But it isn't worth using. There is also a quartic one, which is even less useful for practical formulae. There is no higher order general simple formula, though there are other methods. But they are much harder than simply putting it in polars.
     
  4. Oct 28, 2006 #3
    to find the square roots of say 24+10i, we do the following:
    Let [tex]\sqrt{24+10i} = a+bi[/tex]

    [tex]24+10i = a^2-b^2 + 2abi[/tex]

    [tex]a^2-b^2 = 24[/tex] and [tex]ab = 5[/tex]

    by solving these we can get a=5,-5 and b=1,-1. and thus we get the square roots of 24+10i.

    i was wondering whether a similar method exists for finding the cube roots.
     
  5. Oct 28, 2006 #4

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    It would seem that it is very easy to try to repeat that for cubes. Did you try?
     
  6. Oct 28, 2006 #5

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    It's incredibly ugly, since the form for (a+bi)3 is:

    a3 + 3a2bi - 3ab2 - b3i

    So if you're looking for the cube root of x + iy, you get

    x = a3 - 3ab2
    y = 3a2b - b3

    And you want to solve for a and b. Maybe there's a neat trick, but I don't want to be the one to find it :P
     
  7. Oct 29, 2006 #6
    Well I think cardano's method can be applied here, this might be some help

    http://en.wikipedia.org/wiki/Cubic_equation.

    I haven't applied it though.As Matt pointed out for higher orders it may becom tedious.Using the Polar form will be beneficial.
     
  8. Oct 29, 2006 #7

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I like this line:
    I can understand discovering, say, complex numbers, or 0 (not really discovering, but you get the point), but the idea of just sticking an x3 term doesn't really seem that impressive
     
  9. Nov 1, 2006 #8
    i tried. and it lead to the ugly form Office_Shredder wrote about. that is,

    [tex]x = a^3 - 3ab^2[/tex]
    [tex]y = 3a^{2}b - b^3[/tex]

    here the only thing i can see is that [tex]x^2+y^2 = (a^2+b^2)^3[/tex]

    now how can i solve for a and b from here?
     
    Last edited: Nov 1, 2006
  10. Nov 2, 2006 #9

    arildno

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    Polar representation of a and b suggests itself readily..:wink:
     
  11. Nov 3, 2006 #10

    robphy

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    One could also do it geometrically... which, of course, strongly suggests the strength of a polar approach.
     
  12. Nov 4, 2006 #11
    can anyone please be a bit more elaborate? i dont get it yet.
     
  13. Nov 4, 2006 #12

    Office_Shredder

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Nice and simple.... use polar form.

    Polar form is my anti-drug
     
  14. Nov 4, 2006 #13

    robphy

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

  15. Nov 4, 2006 #14
    i know how to find the cube root using the polar form. i just wanted to know if there is a way to do it without using polar form, just as we can find the square root of a complex number without the polar form.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Cube roots of a complex number
Loading...