Cubic Transformations - Graph shown is best represented by the equation:

Click For Summary
SUMMARY

The discussion focuses on understanding horizontal transformations of cubic functions, specifically the equations f(x+a) and f(x-a). It is established that f(x+a) translates the graph a units to the left, while f(x-a) translates it a units to the right. The example using the base function f(x) = x³ demonstrates these transformations clearly, with f(x-4) indicating a shift 4 units to the right. The participants also analyze the implications of the transformations on the cubic graph's behavior, particularly when comparing different forms of the function.

PREREQUISITES
  • Understanding of cubic functions and their properties
  • Familiarity with function transformations, specifically horizontal shifts
  • Basic knowledge of graphing techniques using tools like Wolfram Alpha
  • Ability to interpret function notation and transformations
NEXT STEPS
  • Study the properties of cubic functions in detail
  • Learn about vertical transformations and their effects on graphs
  • Explore the use of graphing software to visualize function transformations
  • Investigate the implications of function transformations in real-world applications
USEFUL FOR

Students and educators in mathematics, particularly those focusing on algebra and function analysis, as well as anyone interested in graphing techniques and transformations of polynomial functions.

confusedatmath
Messages
14
Reaction score
0
View attachment 1901
View attachment 1902

I am confused about using horizontal transformations such as

f(x+a) and f(x-a) to interpret these graphs.
 

Attachments

  • Screen Shot 2014-02-02 at 2.18.37 pm.png
    Screen Shot 2014-02-02 at 2.18.37 pm.png
    8.2 KB · Views: 106
  • Screen Shot 2014-02-02 at 2.18.43 pm.png
    Screen Shot 2014-02-02 at 2.18.43 pm.png
    11.3 KB · Views: 113
Mathematics news on Phys.org
confusedatmath said:
<snip>

I am confused about using horizontal transformations such as

f(x+a) and f(x-a) to interpret these graphs.

A rule of thumb I use to work out horizontal translations is that the graph moves along the x-axis in the opposite direction to the sign in the function. That is $$f(x+a)$$ moves $$a$$ units to the left (-ve) and $$f(x-a)$$ moves $$a$$ units to the right (+ve).

You can verify the direction by plugging values in and seeing what happens. Your example is a cubic so suppose we have the "base" function $$f(x) = x^3$$. It is pretty clear that $$f(x) = 0 \text{ when } x = 0$$. Now suppose we have $$f(x-4)$$ (where a=4). This translation is shifted 4 units to the right according to the previous paragraph and $$f(x-4) = 0 \text{ when } x-4 = 0 \therefore x=4$$ which is 4 units to the right of 0.

Let me know if you meant something elseedit: If I take your first example the point (a,b) is to the left of 0 on the x-axis so it'll be which sign inside the function
+. Giving us (x+a)^3
 
But the answer is f(x)=-(x-a)^3 +b ...
 
confusedatmath said:
But the answer is f(x)=-(x-a)^3 +b ...

That doesn't make sense to me. I tried it with a graph in wolfram showing the graphs of $$f(x) = -(x+5)^2 \text{ with } g(x) = -x^3$$ for comparison and the graph of f(x) is shifted 5 units left compared to g(x).
 
The first thing you should notice is that when x= a, y= b. Since all of the options have "+ b", the cubic portion must be 0 when x= a so those that have "x+ a" are impossible. That eliminates D and E.

The second thing you should notice is that the usual x^3 is reversed- this graph rises to the left, not the right. That means x is swapped for -x. Since we are using "x- a" instead of x, we must have -(x- a)^3 which is the same as (a- x)^3. That eliminates A leaving B and C which are identical.
 
Last edited by a moderator:
so we sub x=a because in the graph it says (a,b)

what if the question said (-a,b) ??
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K