MHB Curvature and torsion on a helix

Click For Summary
The discussion focuses on determining the curvature and torsion of a right circular helix parameterized by \(x(t) = R\cos(\omega t)\), \(y(t) = R\sin(\omega t)\), and \(z(t) = v_0t\). The curvature is derived as \(\frac{1}{\rho} = \frac{R\omega^2}{R^2\omega^2 + v_0^2}\). The unit tangent vector \(\hat{\mathbf{u}}\) is expressed in terms of the helix parameters, leading to the calculation of the curvature. The discussion also touches on the torsion, represented as \(\tau = -\mathbf{n} \cdot \frac{d \mathbf{b}}{ds}\), where \(\mathbf{t}\), \(\mathbf{n}\), and \(\mathbf{b}\) are defined as the unit tangent, principal normal, and binormal vectors, respectively. The conversation emphasizes the mathematical relationships between these vectors in the context of the helix's geometry.
Dustinsfl
Messages
2,217
Reaction score
5
Consider the case of a right circular helical curve with parameterization \(x(t) = R\cos(\omega t)\), \(y(t) = R\sin(\omega t)\), and \(z(t) = v_0t\). Find the curvature and torsion curve.
http://img30.imageshack.us/img30/7828/gwi.png

We can then parameterize the helix
\begin{align*}
x(t) &= R\cos(\omega t)\\
y(t) &= R\sin(\omega t)\\
z(t) &= v_0t
\end{align*}
We have that
\begin{align*}
\frac{d\mathbf{r}}{dt} &= v\hat{\mathbf{u}}\\
\hat{\mathbf{u}} &= \frac{1}{v}\frac{d\mathbf{r}}{dt}\\
v\hat{\mathbf{u}} &= \frac{d\mathbf{r}}{dt}\\
\lvert v\hat{\mathbf{u}}\rvert &= \left\lvert\frac{d\mathbf{r}}{dt}\right\rvert\\
v &= \left\lvert\frac{d\mathbf{r}}{dt}\right\rvert
\end{align*}
From our parameterization, we have that \(\mathbf{r}(t) = R\cos(\omega t)\hat{\mathbf{i}} + R\sin(\omega t)\hat{\mathbf{j}} +
v_0t\hat{\mathbf{k}}\).
Therefore,
\begin{align*}
\frac{d\mathbf{r}}{dt} &= -R\omega\sin(\omega t)\hat{\mathbf{i}} +
R\omega\cos(\omega t)\hat{\mathbf{j}} + v_0\hat{\mathbf{k}}\\
\left\lvert\frac{d\mathbf{r}}{dt}\right\rvert
&= \sqrt{R^2\omega^2 + v_0^2}\\
v &= \sqrt{R^2\omega^2 + v_0^2}
\end{align*}
So our unit vector \(\hat{\mathbf{u}}\) can be written as
\begin{align*}
\hat{\mathbf{u}} &= \frac{1}{\sqrt{R^2\omega^2 + v_0^2}}
\langle -R\omega\sin(\omega t), R\omega\cos(\omega t), v_0\rangle.
\end{align*}
Since \(\frac{d\hat{\mathbf{u}}}{ds} = \frac{1}{\rho}\hat{\mathbf{n}}\),
\(\left\lvert\frac{d\hat{\mathbf{u}}}{ds} \right\rvert = \frac{1}{\rho}\).
Using the fact that \(\frac{d\hat{\mathbf{u}}}{ds} = \frac{1}{v}\frac{d\hat{\mathbf{u}}}{dt}\), we can now write
\begin{align*}
\frac{1}{\rho} &= \left\lvert\frac{1}{v}\frac{d\hat{\mathbf{u}}}{dt}\right\rvert
\end{align*}
Let's take the time derivative of \(\hat{\mathbf{u}}\).
\begin{alignat*}{2}
\frac{d\hat{\mathbf{u}}}{dt} &= \frac{R\omega^2}{\sqrt{R^2\omega^2 + v_0^2}}\langle
-\cos(\omega t), -\sin(\omega t), 0\rangle\\
\frac{1}{\rho} &= \frac{R\omega^2}{R^2\omega^2 + v_0^2} &&
\left(\text{curvature}\right)
\end{alignat*}
Now, let's look at \(\frac{d\hat{\mathbf{b}}}{ds} = -\frac{1}{\tau}\hat{\mathbf{n}}\).
Then \(\left\lvert \frac{d\hat{\mathbf{b}}}{ds} \right\rvert = \frac{1}{\tau}\).

I am not sure what I can say about \(\frac{d\hat{\mathbf{b}}}{ds}\)
 
Last edited:
Mathematics news on Phys.org
Well, you can write that
$$\tau=-\mathbf{n} \cdot \frac{d \mathbf{b}}{ds},$$
where $\mathbf{b} := \mathbf{t} \times \mathbf{n}$. So here, I'm using $\mathbf{n}$ as the principal normal vector, $\mathbf{t}$ as the unit tangent vector, and $\mathbf{b}$ as the binormal vector. Can you compute $\mathbf{t}, \mathbf{n},$ and $\mathbf{b}$ in terms of arc length?