MHB Curvature and torsion on a helix

Dustinsfl
Messages
2,217
Reaction score
5
Consider the case of a right circular helical curve with parameterization \(x(t) = R\cos(\omega t)\), \(y(t) = R\sin(\omega t)\), and \(z(t) = v_0t\). Find the curvature and torsion curve.
http://img30.imageshack.us/img30/7828/gwi.png

We can then parameterize the helix
\begin{align*}
x(t) &= R\cos(\omega t)\\
y(t) &= R\sin(\omega t)\\
z(t) &= v_0t
\end{align*}
We have that
\begin{align*}
\frac{d\mathbf{r}}{dt} &= v\hat{\mathbf{u}}\\
\hat{\mathbf{u}} &= \frac{1}{v}\frac{d\mathbf{r}}{dt}\\
v\hat{\mathbf{u}} &= \frac{d\mathbf{r}}{dt}\\
\lvert v\hat{\mathbf{u}}\rvert &= \left\lvert\frac{d\mathbf{r}}{dt}\right\rvert\\
v &= \left\lvert\frac{d\mathbf{r}}{dt}\right\rvert
\end{align*}
From our parameterization, we have that \(\mathbf{r}(t) = R\cos(\omega t)\hat{\mathbf{i}} + R\sin(\omega t)\hat{\mathbf{j}} +
v_0t\hat{\mathbf{k}}\).
Therefore,
\begin{align*}
\frac{d\mathbf{r}}{dt} &= -R\omega\sin(\omega t)\hat{\mathbf{i}} +
R\omega\cos(\omega t)\hat{\mathbf{j}} + v_0\hat{\mathbf{k}}\\
\left\lvert\frac{d\mathbf{r}}{dt}\right\rvert
&= \sqrt{R^2\omega^2 + v_0^2}\\
v &= \sqrt{R^2\omega^2 + v_0^2}
\end{align*}
So our unit vector \(\hat{\mathbf{u}}\) can be written as
\begin{align*}
\hat{\mathbf{u}} &= \frac{1}{\sqrt{R^2\omega^2 + v_0^2}}
\langle -R\omega\sin(\omega t), R\omega\cos(\omega t), v_0\rangle.
\end{align*}
Since \(\frac{d\hat{\mathbf{u}}}{ds} = \frac{1}{\rho}\hat{\mathbf{n}}\),
\(\left\lvert\frac{d\hat{\mathbf{u}}}{ds} \right\rvert = \frac{1}{\rho}\).
Using the fact that \(\frac{d\hat{\mathbf{u}}}{ds} = \frac{1}{v}\frac{d\hat{\mathbf{u}}}{dt}\), we can now write
\begin{align*}
\frac{1}{\rho} &= \left\lvert\frac{1}{v}\frac{d\hat{\mathbf{u}}}{dt}\right\rvert
\end{align*}
Let's take the time derivative of \(\hat{\mathbf{u}}\).
\begin{alignat*}{2}
\frac{d\hat{\mathbf{u}}}{dt} &= \frac{R\omega^2}{\sqrt{R^2\omega^2 + v_0^2}}\langle
-\cos(\omega t), -\sin(\omega t), 0\rangle\\
\frac{1}{\rho} &= \frac{R\omega^2}{R^2\omega^2 + v_0^2} &&
\left(\text{curvature}\right)
\end{alignat*}
Now, let's look at \(\frac{d\hat{\mathbf{b}}}{ds} = -\frac{1}{\tau}\hat{\mathbf{n}}\).
Then \(\left\lvert \frac{d\hat{\mathbf{b}}}{ds} \right\rvert = \frac{1}{\tau}\).

I am not sure what I can say about \(\frac{d\hat{\mathbf{b}}}{ds}\)
 
Last edited:
Mathematics news on Phys.org
Well, you can write that
$$\tau=-\mathbf{n} \cdot \frac{d \mathbf{b}}{ds},$$
where $\mathbf{b} := \mathbf{t} \times \mathbf{n}$. So here, I'm using $\mathbf{n}$ as the principal normal vector, $\mathbf{t}$ as the unit tangent vector, and $\mathbf{b}$ as the binormal vector. Can you compute $\mathbf{t}, \mathbf{n},$ and $\mathbf{b}$ in terms of arc length?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top