Curvature and torsion on a helix

Click For Summary
SUMMARY

The discussion focuses on calculating the curvature and torsion of a right circular helix parameterized by \(x(t) = R\cos(\omega t)\), \(y(t) = R\sin(\omega t)\), and \(z(t) = v_0t\). The curvature is derived as \(\frac{1}{\rho} = \frac{R\omega^2}{R^2\omega^2 + v_0^2}\), while the torsion is expressed as \(\tau = -\mathbf{n} \cdot \frac{d \mathbf{b}}{ds}\), where \(\mathbf{n}\), \(\mathbf{t}\), and \(\mathbf{b}\) represent the principal normal, unit tangent, and binormal vectors, respectively. The discussion emphasizes the relationships between these vectors and their derivatives in the context of arc length.

PREREQUISITES
  • Understanding of vector calculus and differential geometry
  • Familiarity with parametric equations and their derivatives
  • Knowledge of curvature and torsion concepts
  • Ability to compute derivatives with respect to arc length
NEXT STEPS
  • Study the derivation of curvature and torsion for different curves
  • Learn about Frenet-Serret formulas and their applications
  • Explore the implications of curvature and torsion in 3D space
  • Investigate the geometric interpretations of the principal normal and binormal vectors
USEFUL FOR

Mathematicians, physicists, and engineers interested in the geometric properties of curves, particularly those working with helical structures or studying motion in three-dimensional space.

Dustinsfl
Messages
2,217
Reaction score
5
Consider the case of a right circular helical curve with parameterization \(x(t) = R\cos(\omega t)\), \(y(t) = R\sin(\omega t)\), and \(z(t) = v_0t\). Find the curvature and torsion curve.
http://img30.imageshack.us/img30/7828/gwi.png

We can then parameterize the helix
\begin{align*}
x(t) &= R\cos(\omega t)\\
y(t) &= R\sin(\omega t)\\
z(t) &= v_0t
\end{align*}
We have that
\begin{align*}
\frac{d\mathbf{r}}{dt} &= v\hat{\mathbf{u}}\\
\hat{\mathbf{u}} &= \frac{1}{v}\frac{d\mathbf{r}}{dt}\\
v\hat{\mathbf{u}} &= \frac{d\mathbf{r}}{dt}\\
\lvert v\hat{\mathbf{u}}\rvert &= \left\lvert\frac{d\mathbf{r}}{dt}\right\rvert\\
v &= \left\lvert\frac{d\mathbf{r}}{dt}\right\rvert
\end{align*}
From our parameterization, we have that \(\mathbf{r}(t) = R\cos(\omega t)\hat{\mathbf{i}} + R\sin(\omega t)\hat{\mathbf{j}} +
v_0t\hat{\mathbf{k}}\).
Therefore,
\begin{align*}
\frac{d\mathbf{r}}{dt} &= -R\omega\sin(\omega t)\hat{\mathbf{i}} +
R\omega\cos(\omega t)\hat{\mathbf{j}} + v_0\hat{\mathbf{k}}\\
\left\lvert\frac{d\mathbf{r}}{dt}\right\rvert
&= \sqrt{R^2\omega^2 + v_0^2}\\
v &= \sqrt{R^2\omega^2 + v_0^2}
\end{align*}
So our unit vector \(\hat{\mathbf{u}}\) can be written as
\begin{align*}
\hat{\mathbf{u}} &= \frac{1}{\sqrt{R^2\omega^2 + v_0^2}}
\langle -R\omega\sin(\omega t), R\omega\cos(\omega t), v_0\rangle.
\end{align*}
Since \(\frac{d\hat{\mathbf{u}}}{ds} = \frac{1}{\rho}\hat{\mathbf{n}}\),
\(\left\lvert\frac{d\hat{\mathbf{u}}}{ds} \right\rvert = \frac{1}{\rho}\).
Using the fact that \(\frac{d\hat{\mathbf{u}}}{ds} = \frac{1}{v}\frac{d\hat{\mathbf{u}}}{dt}\), we can now write
\begin{align*}
\frac{1}{\rho} &= \left\lvert\frac{1}{v}\frac{d\hat{\mathbf{u}}}{dt}\right\rvert
\end{align*}
Let's take the time derivative of \(\hat{\mathbf{u}}\).
\begin{alignat*}{2}
\frac{d\hat{\mathbf{u}}}{dt} &= \frac{R\omega^2}{\sqrt{R^2\omega^2 + v_0^2}}\langle
-\cos(\omega t), -\sin(\omega t), 0\rangle\\
\frac{1}{\rho} &= \frac{R\omega^2}{R^2\omega^2 + v_0^2} &&
\left(\text{curvature}\right)
\end{alignat*}
Now, let's look at \(\frac{d\hat{\mathbf{b}}}{ds} = -\frac{1}{\tau}\hat{\mathbf{n}}\).
Then \(\left\lvert \frac{d\hat{\mathbf{b}}}{ds} \right\rvert = \frac{1}{\tau}\).

I am not sure what I can say about \(\frac{d\hat{\mathbf{b}}}{ds}\)
 
Last edited:
Physics news on Phys.org
Well, you can write that
$$\tau=-\mathbf{n} \cdot \frac{d \mathbf{b}}{ds},$$
where $\mathbf{b} := \mathbf{t} \times \mathbf{n}$. So here, I'm using $\mathbf{n}$ as the principal normal vector, $\mathbf{t}$ as the unit tangent vector, and $\mathbf{b}$ as the binormal vector. Can you compute $\mathbf{t}, \mathbf{n},$ and $\mathbf{b}$ in terms of arc length?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
900
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
825
  • · Replies 2 ·
Replies
2
Views
2K