MHB Dale Simpson's question at Yahoo Answers (One-to-one matrix)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
A matrix A is considered one-to-one if the equation Ax = Ay implies that x = y for any vectors x and y. The discussion centers on proving that if a linear combination of the columns of A equals zero only has the trivial solution, then A must be one-to-one. If A is not one-to-one, there exist distinct vectors x and y such that Ax = Ay, leading to a contradiction when applying the linear combination condition. The conclusion drawn is that the existence of only the trivial solution for the linear combination confirms that A is indeed one-to-one. This proof reinforces the relationship between linear independence of columns and the injective nature of the matrix transformation.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

recall a matrix A is one-to-one if for vectors x and y, Ax = Ay implies that x = y. Suppose A is a
matrix with columns v1, v2, . . . vk. Prove if any linear combination of the form
a1*v1 + a2*v2 + : : : + ak*vk = 0;
has only the trivial solution, then A is one-to-one.

Here is a link to the question:

Prove a matrix is one to one? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Dale,

Suppose that $A$ (order $m\times k$) is not one-to-one, then there exist vectors $x=(x_1,\ldots,x_k)^t$ and $y=(y_1,\ldots,y_k)^t$ such that $Ax=Ay$ with $x\neq y$. Equivalently, $A(x-y)=0$ with $x\neq y$. We have $x_i-y_i\neq 0$ for some $i$. Then, $$\begin{aligned}&A\begin{bmatrix}x_1-y_1\\ \vdots\\{x_i-y_i}\\ \vdots\\x_k-y_k\end{bmatrix}=\begin{bmatrix}{v_1}&{\ldots}&{v_k}\end{bmatrix}\begin{bmatrix}x_1-y_1\\ \vdots\\{x_i-y_i}\\ \vdots\\x_k-y_k\end{bmatrix}\\&=(x_1-y_1)v_1+\ldots+(x_i-y_i)v_i+\ldots+(x_k-y_k)v_k=0\end{aligned}$$ This implies that not all linear combination $a_1v_1+\ldots+a_kv_k=0$ has only the trivial solution (contradiction).
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
3K