MHB Dale Simpson's question at Yahoo Answers (One-to-one matrix)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
A matrix A is considered one-to-one if the equation Ax = Ay implies that x = y for any vectors x and y. The discussion centers on proving that if a linear combination of the columns of A equals zero only has the trivial solution, then A must be one-to-one. If A is not one-to-one, there exist distinct vectors x and y such that Ax = Ay, leading to a contradiction when applying the linear combination condition. The conclusion drawn is that the existence of only the trivial solution for the linear combination confirms that A is indeed one-to-one. This proof reinforces the relationship between linear independence of columns and the injective nature of the matrix transformation.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

recall a matrix A is one-to-one if for vectors x and y, Ax = Ay implies that x = y. Suppose A is a
matrix with columns v1, v2, . . . vk. Prove if any linear combination of the form
a1*v1 + a2*v2 + : : : + ak*vk = 0;
has only the trivial solution, then A is one-to-one.

Here is a link to the question:

Prove a matrix is one to one? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Dale,

Suppose that $A$ (order $m\times k$) is not one-to-one, then there exist vectors $x=(x_1,\ldots,x_k)^t$ and $y=(y_1,\ldots,y_k)^t$ such that $Ax=Ay$ with $x\neq y$. Equivalently, $A(x-y)=0$ with $x\neq y$. We have $x_i-y_i\neq 0$ for some $i$. Then, $$\begin{aligned}&A\begin{bmatrix}x_1-y_1\\ \vdots\\{x_i-y_i}\\ \vdots\\x_k-y_k\end{bmatrix}=\begin{bmatrix}{v_1}&{\ldots}&{v_k}\end{bmatrix}\begin{bmatrix}x_1-y_1\\ \vdots\\{x_i-y_i}\\ \vdots\\x_k-y_k\end{bmatrix}\\&=(x_1-y_1)v_1+\ldots+(x_i-y_i)v_i+\ldots+(x_k-y_k)v_k=0\end{aligned}$$ This implies that not all linear combination $a_1v_1+\ldots+a_kv_k=0$ has only the trivial solution (contradiction).
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
3K