MHB Dale Simpson's question at Yahoo Answers (One-to-one matrix)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrix
AI Thread Summary
A matrix A is considered one-to-one if the equation Ax = Ay implies that x = y for any vectors x and y. The discussion centers on proving that if a linear combination of the columns of A equals zero only has the trivial solution, then A must be one-to-one. If A is not one-to-one, there exist distinct vectors x and y such that Ax = Ay, leading to a contradiction when applying the linear combination condition. The conclusion drawn is that the existence of only the trivial solution for the linear combination confirms that A is indeed one-to-one. This proof reinforces the relationship between linear independence of columns and the injective nature of the matrix transformation.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

recall a matrix A is one-to-one if for vectors x and y, Ax = Ay implies that x = y. Suppose A is a
matrix with columns v1, v2, . . . vk. Prove if any linear combination of the form
a1*v1 + a2*v2 + : : : + ak*vk = 0;
has only the trivial solution, then A is one-to-one.

Here is a link to the question:

Prove a matrix is one to one? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Dale,

Suppose that $A$ (order $m\times k$) is not one-to-one, then there exist vectors $x=(x_1,\ldots,x_k)^t$ and $y=(y_1,\ldots,y_k)^t$ such that $Ax=Ay$ with $x\neq y$. Equivalently, $A(x-y)=0$ with $x\neq y$. We have $x_i-y_i\neq 0$ for some $i$. Then, $$\begin{aligned}&A\begin{bmatrix}x_1-y_1\\ \vdots\\{x_i-y_i}\\ \vdots\\x_k-y_k\end{bmatrix}=\begin{bmatrix}{v_1}&{\ldots}&{v_k}\end{bmatrix}\begin{bmatrix}x_1-y_1\\ \vdots\\{x_i-y_i}\\ \vdots\\x_k-y_k\end{bmatrix}\\&=(x_1-y_1)v_1+\ldots+(x_i-y_i)v_i+\ldots+(x_k-y_k)v_k=0\end{aligned}$$ This implies that not all linear combination $a_1v_1+\ldots+a_kv_k=0$ has only the trivial solution (contradiction).
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top