MHB Dale's questions via Facebook about Riemann Sums

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 7140
View attachment 7141

(a) Since a = 2, that means $\displaystyle \begin{align*} \Delta x = \frac{2}{5} \end{align*}$

(b)
$\displaystyle \begin{align*} f \left( \frac{7\,\Delta x}{2} \right) &= f \left( \frac{7}{5} \right) \\ &= \left( \frac{7}{5} \right) ^2 \\ &= \frac{49}{25} \end{align*}$

(c)
$\displaystyle \begin{align*} A_4 &= f \left( \frac{7}{5} \right) \cdot \Delta x \\ &= \frac{49}{25} \cdot \frac{2}{5} \\ &= \frac{98}{125} \,\textrm{units}^2 \end{align*}$

(d)
$\displaystyle \begin{align*} A_i &= f \left( x_i \right) \cdot \Delta x \end{align*}$

(e)
$\displaystyle \begin{align*} S_5 &= \sum_{i = 1}^5{ \left[ f \left( x_i \right) \cdot \Delta x \right] } \\ &= f \left( x_1 \right) \cdot \Delta x + f \left( x_2 \right) \cdot \Delta x + f \left( x_3 \right) \cdot \Delta x + f \left( x_4 \right) \cdot \Delta x + f \left( x_5 \right) \cdot \Delta x \\ &= \left( \frac{1}{5} \right) ^2 \cdot \frac{2}{5} + \left( \frac{3}{5} \right) ^2 \cdot \frac{2}{5} + \left( \frac{5}{5} \right) ^2 \cdot \frac{2}{5} + \left( \frac{7}{5} \right) ^2 \cdot \frac{2}{5} + \left( \frac{9}{5} \right) ^2 \cdot \frac{2}{5} \\ &= \frac{1}{25} \cdot \frac{2}{5} + \frac{9}{25} \cdot \frac{2}{5} + \frac{25}{25} \cdot \frac{2}{5} + \frac{49}{25} \cdot \frac{2}{5} + \frac{81}{25} \cdot \frac{2}{5} \\ &= \frac{2}{125} + \frac{18}{125} + \frac{50}{125} + \frac{98}{125} + \frac{162}{125} \\ &= \frac{330}{125} \\ &= \frac{66}{25} \,\textrm{units}^2 \end{align*}$

(f)
$\displaystyle \begin{align*} A &= \int_0^a{f\left( x \right) \,\mathrm{d}x} \\ &= \int_0^2{ x^2\,\mathrm{d}x } \\ &= \left[ \frac{x^3}{3} \right] _0^2 \\ &= \frac{2^3}{3} - \frac{0^3}{3} \\ &= \frac{8}{3} \,\textrm{units}^2 \end{align*}$

(g)
$\displaystyle \begin{align*} \textrm{Error} &= \frac{66}{25} - \frac{8}{3} \\ &= \frac{198}{75} - \frac{200}{75} \\ &= -\frac{2}{75} \end{align*}$

So the percentage error is

$\displaystyle \begin{align*} \frac{-\frac{2}{75}}{\frac{8}{3}} \cdot 100\% &= -\frac{2}{75} \cdot \frac{3}{8} \cdot 100\% \\ &= -\frac{600\%}{600} \\ &= -1\% \end{align*}$
 

Attachments

  • part 1.jpg
    part 1.jpg
    38.7 KB · Views: 119
  • part 2.jpg
    part 2.jpg
    19.6 KB · Views: 110
Mathematics news on Phys.org
View attachment 7142

(a) Since the distance along the x-axis is "b" and it is being divided into "n" rectangles, that means $\displaystyle \begin{align*} \Delta x = \frac{b}{n} \end{align*}$.

(b) Each interval can be written as $\displaystyle \begin{align*} \left[ \left( i - 1 \right) \Delta x , i\,\Delta x \right] \end{align*}$, so that means the midpoint of each interval is

$\displaystyle \begin{align*} x_i &= \frac{\left( i - 1 \right) \Delta x + i\,\Delta x}{2} \\ &= \frac{\left( i - 1 + i \right) \Delta x}{2} \\ &= \frac{\left( 2\,i - 1 \right) \Delta x}{2} \end{align*}$

View attachment 7144

(c) Since we have found $\displaystyle \begin{align*} \Delta x = \frac{b}{n} \end{align*}$ that means

$\displaystyle \begin{align*} x_i &= \frac{\left( 2\,i - 1 \right) \Delta x}{2} \\ &= \frac{\left( 2\,i - 1 \right) \frac{b}{n}}{2} \\ &= \left( 2\,i - 1 \right) \frac{b}{2\,n} \end{align*}$

(d) The length of each rectangle is $\displaystyle \begin{align*} \Delta x \end{align*}$ and the width is $\displaystyle \begin{align*} g \left( x_i \right) \end{align*}$ so the area of each rectangle is $\displaystyle \begin{align*} A_i = g \left( x_i \right) \Delta x \end{align*}$

(e) Since $\displaystyle \begin{align*} x_i = \left( 2\,i - 1 \right) \frac{b}{2\,n} \end{align*}$ that means $\displaystyle \begin{align*} g \left( x_i \right) = g \left( \left( 2\,i - 1 \right) \frac{b}{2\,n} \right) \end{align*}$ and $\displaystyle \begin{align*} \Delta x = \frac{b}{n} \end{align*}$ that means $\displaystyle \begin{align*} g \left( \left( 2\,i - 1 \right) \frac{b}{2\,n} \right) \frac{b}{n} = g \left( x_i \right) \Delta x \end{align*}$, so

$\displaystyle \begin{align*} \sum_{i = 1}^n{ \left[ g\left( \left( 2\,i - 1 \right) \frac{b}{2\,n}\right) \Delta x \right] } &= \sum_{i = 1}^n{ \left[ g \left( x_i \right) \Delta x \right] } \\ &= \sum_{i = 1}^n{A_i} \end{align*}$

(f) (i) If $\displaystyle \begin{align*} g \left( x \right) = x^3 \end{align*}$, that means

$\displaystyle \begin{align*} \sum_{i = 1}^n{ A_i } &= \sum_{i = 1}^n{ \left[ g \left( \left( 2\,i - 1 \right) \frac{b}{2\,n} \right) \Delta x \right] } \\ &= \sum_{i = 1}^n{ \left\{ \left[ \left( 2\,i - 1 \right) \frac{b}{2\,n} \right] ^3 \,\frac{b}{n} \right\} } \end{align*}$

so when $\displaystyle \begin{align*} n = 100 \end{align*}$ we have

$\displaystyle \begin{align*} \sum_{i = 1}^{100}{ \left\{ \left[ \left( 2\,i - 1 \right) \frac{b}{100}\right] ^3\,\frac{b}{100} \right\} } &= \frac{19\,999\,b^4}{80\,000} \end{align*}$

Wolfram|Alpha: Computational Knowledge Engine

(ii)
$\displaystyle \begin{align*} A &= \lim_{n \to \infty}{ \left\{ \left[ \left( 2\,i - 1 \right) \frac{b}{n} \right] ^3 \,\frac{b}{n} \right\} } \\ &= \frac{b^4}{4} \end{align*}$

Wolfram|Alpha: Computational Knowledge Engine

View attachment 7145(g) The exact area under the curve $\displaystyle \begin{align*} g(x) = x^3 \end{align*}$ between x = 0 and x = b is

$\displaystyle \begin{align*} A &= \int_0^b{x^3\,\mathrm{d}x} &= \left[ \frac{x^4}{4} \right] _0^b \\ &= \frac{b^4}{4} - \frac{0^4}{4} \\ &= \frac{b^4}{4} \,\textrm{units}^2 \end{align*}$

(i) so the error in using 100 rectangles for the approximation is

$\displaystyle \begin{align*} \frac{b^4}{4} - \frac{19\,999\,b^4}{80\,000} &= \frac{20\,000\,b^4}{80\,000} - \frac{19\,999\,b^4}{80\,000} \\ &= \frac{b^4}{80\,000} \end{align*}$

and so the percentage error is

$\displaystyle \begin{align*} \frac{\frac{b^4}{80\,000}}{\frac{b^4}{4}} \cdot 100\% &= \frac{b^4}{80\,000} \cdot \frac{4}{b^4} \cdot 100\% \\ &= \frac{100\%}{20\,000} \\ &= 0.005\% \end{align*}$

(ii) and as the limiting value is exactly equal to the integral value, the percentage error is 0%.
 

Attachments

  • part 3.jpg
    part 3.jpg
    27.4 KB · Views: 122
  • part 4.jpg
    part 4.jpg
    37.7 KB · Views: 110
  • part 4.jpg
    part 4.jpg
    27 KB · Views: 118
  • part 5.jpg
    part 5.jpg
    19.3 KB · Views: 120
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
6K
Replies
1
Views
10K
Replies
1
Views
11K
Replies
2
Views
2K
Replies
4
Views
11K
Replies
4
Views
1K
Replies
1
Views
11K
Back
Top