$u(x) = e^{\int (2/t) dt}= e^{2\ln t} = \left(e^{\ln t}\right)^2 = t^2$.karush said:#18
$ ty'+2y=\sin t \quad y(\pi/2)=1 \quad t\ge 0$
$y'+\dfrac{2}{t}y=\dfrac{\sin t}{t}$
so
$u(x) = e^{\int 2/t dt}= e^{t^2/4}$
Opalg said:$u(x) = e^{\int (2/t) dt}= e^{2\ln t} = \left(e^{\ln t}\right)^2 = t^2$.
Yes, keep going! (Yes) (Integrate both sides with respect to $t$.)karush said:$t^2 y'+\dfrac{2t^2}{t}y=\dfrac{t^2\sin t}{t}$
$t^2 y'+2ty=t\sin t$
$(yt^2)'=t\sin t$
proceed ?
$(yt^2)'=t\sin t$Opalg said:Yes, keep going! (Yes) (Integrate both sides with respect to $t$.)
skeeter said:$y = -\dfrac{\cos{t}}{t} + \dfrac{\sin{t}}{t^2} + \dfrac{C}{t^2}$
$y\left(\dfrac{\pi}{2}\right) = 1$
$1 = 0 + \dfrac{4}{\pi^2} + \dfrac{4C}{\pi^2}$
solve for $C$
karush said:$+ \dfrac{\pi^2-4}{4t^2}$
Where did this come from?