MHB De 17 y'-2y=e^{2t} y(0)=2

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
#18
$ ty'+2y=\sin t \quad y(\pi/2)=1 \quad t\ge 0$
$y'+\dfrac{2}{t}y=\dfrac{\sin t}{t}$
so
$u(x) = e^{\int 2/t dt}= e^{t^2/4}$
 

Attachments

  • 2020_04_23_18.52.40.jpg
    2020_04_23_18.52.40.jpg
    22.8 KB · Views: 110
Last edited:
Physics news on Phys.org
karush said:
#18
$ ty'+2y=\sin t \quad y(\pi/2)=1 \quad t\ge 0$
$y'+\dfrac{2}{t}y=\dfrac{\sin t}{t}$
so
$u(x) = e^{\int 2/t dt}= e^{t^2/4}$
$u(x) = e^{\int (2/t) dt}= e^{2\ln t} = \left(e^{\ln t}\right)^2 = t^2$.
 
Opalg said:
$u(x) = e^{\int (2/t) dt}= e^{2\ln t} = \left(e^{\ln t}\right)^2 = t^2$.

$t^2 y'+\dfrac{2t^2}{t}y=\dfrac{t^2\sin t}{t}$
$t^2 y'+2ty=t\sin t$
$(yt^2)'=t\sin t$

proceed ?
 
karush said:
$t^2 y'+\dfrac{2t^2}{t}y=\dfrac{t^2\sin t}{t}$
$t^2 y'+2ty=t\sin t$
$(yt^2)'=t\sin t$

proceed ?
Yes, keep going! (Yes) (Integrate both sides with respect to $t$.)
 
Opalg said:
Yes, keep going! (Yes) (Integrate both sides with respect to $t$.)
$(yt^2)'=t\sin t$
IBP gives
$yt^2=-t\cos (t)+\sin (t)+C$
isolate y and reduce
$y=-\dfrac{\cos (t)}{t}+\dfrac{\sin (t)}{t^2}+\dfrac{c}{t^2}$ if ok next $y(\pi/2)=1$

isn't $t^2$ going to be ?
 
Last edited:
$y = -\dfrac{\cos{t}}{t} + \dfrac{\sin{t}}{t^2} + \dfrac{C}{t^2}$

$y\left(\dfrac{\pi}{2}\right) = 1$

$1 = 0 + \dfrac{4}{\pi^2} + \dfrac{4C}{\pi^2}$

solve for $C$
 
skeeter said:
$y = -\dfrac{\cos{t}}{t} + \dfrac{\sin{t}}{t^2} + \dfrac{C}{t^2}$

$y\left(\dfrac{\pi}{2}\right) = 1$

$1 = 0 + \dfrac{4}{\pi^2} + \dfrac{4C}{\pi^2}$

solve for $C$

$1 = 0 + \dfrac{4}{\pi^2} + \dfrac{4C}{\pi^2}$
$\pi^2=4+4C$
$C=\dfrac{\pi ^2-4}{4}\approx1.4674 $wasn't expecting a decimal but..not sure how you would ck this?
 
what's up with the decimal? keep the exact value for $C$

$y = -\dfrac{\cos{t}}{t} + \dfrac{\sin{t}}{t^2} + \dfrac{\pi^2-4}{4t^2}$

$y\left(\dfrac{\pi}{2}\right) = 0 + \dfrac{4}{\pi^2} + \dfrac{\pi^2-4}{4 \cdot \frac{\pi^2}{4}}$

$y\left(\dfrac{\pi}{2}\right) = 0 + \dfrac{4}{\pi^2} + \dfrac{\pi^2-4}{\pi^2}$

$y\left(\dfrac{\pi}{2}\right) = 0 + \cancel{\dfrac{4}{\pi^2}} + \dfrac{\pi^2}{\pi^2} - \cancel{\dfrac{4}{\pi^2}}$

$y\left(\dfrac{\pi}{2}\right) = 1$
 
$+ \dfrac{\pi^2-4}{4t^2}$

Where did this come from?
 
  • #10
karush said:
$+ \dfrac{\pi^2-4}{4t^2}$

Where did this come from?

it’s $\dfrac{C}{t^2}$
 

Similar threads

Replies
9
Views
3K
Replies
10
Views
2K
Replies
3
Views
1K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
1
Views
1K
Back
Top