shamieh
- 538
- 0
Just need someone to check my work. Thank you for your time. First time doing a 5 input Kmap.
Determine the following 5 input Karnaugh map for function f(V,W,Z,Y,Z) determine the minimal SOP equation. NOTE: (WX are the variables associated with the top column, and YZ are the variables associated with the other column horizontally.)
[TABLE="class: grid, width: 250"]
[TR]
[TD]YZ|WX
[/TD]
[TD]00
[/TD]
[TD]01
[/TD]
[TD]11
[/TD]
[TD]10
[/TD]
[/TR]
[TR]
[TD]00
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[/TR]
[TR]
[TD]01
[/TD]
[TD]1
[/TD]
[TD]1
[/TD]
[TD]0
[/TD]
[TD]1
[/TD]
[/TR]
[TR]
[TD]11
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]1
[/TD]
[/TR]
[TR]
[TD]10
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[/TR]
[/TABLE]
v = 0
[TABLE="class: grid, width: 250"]
[TR]
[TD]YZ|WX
[/TD]
[TD]00
[/TD]
[TD]01
[/TD]
[TD]11
[/TD]
[TD]10
[/TD]
[/TR]
[TR]
[TD]00
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[/TR]
[TR]
[TD]01
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]1
[/TD]
[TD]1
[/TD]
[/TR]
[TR]
[TD]11
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]1
[/TD]
[TD]1
[/TD]
[/TR]
[TR]
[TD]10
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[/TR]
[/TABLE]
v = 1
My Answer: $$vzw + zw\bar{x} +\bar{v}\bar{y}z\bar{w}$$
Determine the following 5 input Karnaugh map for function f(V,W,Z,Y,Z) determine the minimal SOP equation. NOTE: (WX are the variables associated with the top column, and YZ are the variables associated with the other column horizontally.)
[TABLE="class: grid, width: 250"]
[TR]
[TD]YZ|WX
[/TD]
[TD]00
[/TD]
[TD]01
[/TD]
[TD]11
[/TD]
[TD]10
[/TD]
[/TR]
[TR]
[TD]00
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[/TR]
[TR]
[TD]01
[/TD]
[TD]1
[/TD]
[TD]1
[/TD]
[TD]0
[/TD]
[TD]1
[/TD]
[/TR]
[TR]
[TD]11
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]1
[/TD]
[/TR]
[TR]
[TD]10
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[/TR]
[/TABLE]
v = 0
[TABLE="class: grid, width: 250"]
[TR]
[TD]YZ|WX
[/TD]
[TD]00
[/TD]
[TD]01
[/TD]
[TD]11
[/TD]
[TD]10
[/TD]
[/TR]
[TR]
[TD]00
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[/TR]
[TR]
[TD]01
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]1
[/TD]
[TD]1
[/TD]
[/TR]
[TR]
[TD]11
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]1
[/TD]
[TD]1
[/TD]
[/TR]
[TR]
[TD]10
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[TD]0
[/TD]
[/TR]
[/TABLE]
v = 1
My Answer: $$vzw + zw\bar{x} +\bar{v}\bar{y}z\bar{w}$$