- #1
kodama
- 1,026
- 139
https://www.eurekalert.org/pub_releases/2017-04/thni-tma041217.php
In its most recent analysis the LHCb experiment team took into account not only the first but also the second phase of operation of the LHC. The larger statistics helped achieve exceptional accuracy of the measurement of the decay of the beauty meson into a muon and anti-muon, of up to 7.8 standard deviations (commonly denoted by the Greek letter sigma). In practice, this means that the probability of registering a similar result by random fluctuation is less than one to over 323 trillion.
"The spectacular measurement of the decay of the beauty meson into a muon-anti-muon pair agrees with the predictions of the Standard Model with an accuracy of up to up to nine decimal places!" emphasizes Prof. Witek.
The Standard Model has emerged victorious from another confrontation with reality.
"The latest analysis significantly narrows down the values of the parameters that should be assumed by certain currently proposed extensions of the Standard Model, for example supersymmetric theories. They assume that each existing type of elementary particle has its own more massive counterpart - its superpartner. Now, as a result of the measurements, theorists dealing with supersymmetry have less and less possibility of adapting their theory to reality. Instead of coming closer, the new physics is again receding," concludes Prof. Witek.
^
so the SM model predicts decay of B meson to muon-antimuon
and the latest data set from LHC confirms SM to 7.8 sigma and dis confirms various SUSY that predict a different decay rate of B meson.
how restrictive are B meson decays on SUSY, esp at 7.8 sigma agreement with SM
In its most recent analysis the LHCb experiment team took into account not only the first but also the second phase of operation of the LHC. The larger statistics helped achieve exceptional accuracy of the measurement of the decay of the beauty meson into a muon and anti-muon, of up to 7.8 standard deviations (commonly denoted by the Greek letter sigma). In practice, this means that the probability of registering a similar result by random fluctuation is less than one to over 323 trillion.
"The spectacular measurement of the decay of the beauty meson into a muon-anti-muon pair agrees with the predictions of the Standard Model with an accuracy of up to up to nine decimal places!" emphasizes Prof. Witek.
The Standard Model has emerged victorious from another confrontation with reality.
"The latest analysis significantly narrows down the values of the parameters that should be assumed by certain currently proposed extensions of the Standard Model, for example supersymmetric theories. They assume that each existing type of elementary particle has its own more massive counterpart - its superpartner. Now, as a result of the measurements, theorists dealing with supersymmetry have less and less possibility of adapting their theory to reality. Instead of coming closer, the new physics is again receding," concludes Prof. Witek.
^
so the SM model predicts decay of B meson to muon-antimuon
and the latest data set from LHC confirms SM to 7.8 sigma and dis confirms various SUSY that predict a different decay rate of B meson.
how restrictive are B meson decays on SUSY, esp at 7.8 sigma agreement with SM