- #1
hope2009
- 3
- 0
In RSA: d_K (y)=y^d mod n and n=pq. Define
d_p=d mod(p-1)
d_q=d mod(q-1)
Let
M_p=q^(-1) mod p
M_q=p^(-1) mod q
And
x_p=y^(d_p ) mod p
x_q=y^(d_q ) mod q
x=M_p qx_p+M_q px_q mod n
Show that y^d=x mod n
any help would be appraciated, thanks
d_p=d mod(p-1)
d_q=d mod(q-1)
Let
M_p=q^(-1) mod p
M_q=p^(-1) mod q
And
x_p=y^(d_p ) mod p
x_q=y^(d_q ) mod q
x=M_p qx_p+M_q px_q mod n
Show that y^d=x mod n
any help would be appraciated, thanks