Math Challenge - June 2021

Click For Summary
SUMMARY

The forum discussion centers on advanced mathematical concepts including Lie algebras, Hölder continuity, and the properties of gases as described by the Van der Waals equation. Key problems involve proving uniform continuity of specific functions, analyzing automorphisms of symmetric groups, and exploring properties of codes in coding theory. Participants have provided solutions to various problems, confirming their correctness and discussing methodologies for proofs.

PREREQUISITES
  • Understanding of Lie algebras and their properties
  • Familiarity with Hölder continuity and uniform continuity
  • Knowledge of the Van der Waals equation and thermodynamic principles
  • Basic concepts in coding theory, specifically Hamming distance
NEXT STEPS
  • Study the properties of Lie algebras in depth, focusing on linear operators
  • Learn about Hölder continuity and its implications in real analysis
  • Explore the Van der Waals equation and its applications in physical chemistry
  • Investigate coding theory, particularly the implications of Hamming distance on code design
USEFUL FOR

Mathematicians, physics students, and computer scientists interested in advanced mathematical theories, particularly those working with algebraic structures, analysis, and coding theory.

  • #61
julian said:
Problem #8:

By definition

\begin{align*}
H (p) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p -1} = \frac{a}{b} .
\end{align*}

If we can show that:

\begin{align*}
(p - 1)! \left( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{p - 1} \right) = k p^2
\end{align*}

where ##k## is an integer then we would have

\begin{align*}
H (p) = \frac{k p^2}{(p - 1)!} .
\end{align*}

Since none of the factors in ##(p - 1)!## divide ##p## no ##p## in the numerator can be canceled out. Thus ##p^2## would divide the numerator.

In the polynomial

\begin{align*}
g (x) = (x-1)(x-2) \cdots (x - (p - 1)) = x^{p-1} + a_1 x^{p - 2} + \cdots + a_{p -2} x + a_{p - 1} \quad (*)
\end{align*}

the term ##a_{p - 2}## is given by

\begin{align*}
a_{p -2} = - (p -1)! \left( 1 + \frac{1}{2} + \cdots + \frac{1}{p - 1} \right)
\end{align*}

If we can show that ##- a_{p - 2} = k p^2## that will solve the problem.

We have ##a_{p - 1} = (p - 1)!##.

Fermat's little theorem says that ##a^{p - 1} \equiv 1 \; (\text{mod } p)## for any integer ##a##. It follows that modulo ##p##, that ##x^{p - 1} - 1## has the roots ##p - 1## roots ##1,2, \dots , p-1##. So that:

\begin{align*}
h (x) = x^{p - 1} - 1 \equiv (x-1)(x-2) \cdots (x - (p - 1)) \; (\text{mod } p) .
\end{align*}

Note that modulo ##p##, ##h (x)## and ##g (x)## have the same roots.

Also, Wilson's theorem says that:

\begin{align*}
(p - 1)! \equiv -1 \; (\text{mod } p)
\end{align*}

Using all of the above in the polynomial ##g (x) - h (x)## we obtain

\begin{align*}
f (x) & = g (x) - h (x)
\nonumber \\
& = x^{p-1} + a_1 x^{p - 2} + \cdots + a_{p -2} x + a_{p - 1} - x^{p - 1} + 1
\nonumber \\
& \equiv a_1 x^{p - 2} + a_2 x^{p -3} + \cdots + a_{p -2} x \; (\text{mod } p)
\nonumber \\
& \equiv 0 .
\end{align*}

As this is a polynomial of degree ##p - 2## with the ##p - 1## solutions by Lagrange's theorem ##p## divides all the coefficients.

Putting ##x = p## in ##(*)## gives

\begin{align*}
(p-1)! = p^{p-1} + a_1 p^{p - 2} + a_2 p^{p -3} + \cdots + a_{p -2} p + a_{p - 1}
\end{align*}

Subtracting ##(p - 1)!## from both sides, dividing by ##p##, and then rearranging gives

\begin{align*}
- a_{p - 2} = p^{p-2} + a_1 p^{p - 3} + \cdots + a_{p - 3} p .
\end{align*}

As we are taking ##p \geq 5##, and as each of the coefficients ##a_1, a_2, \dots a_{p - 3}## is proportional to ##p## the RHS is equal to ##k p^2## where ##k## is an integer.

If ##p## were equal to 3 we couldn't say that the term ##a_1 p^{p - 3}## is proportional to ##3^2## as ##a_1 p^{p - 3} = a_1##. The result clearly doesn't apply to ##H (3)##:

\begin{align*}
H (3) = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6} .
\end{align*}
Right. The result is known as the Theorem of Wolstenholme.
 
Physics news on Phys.org
  • #62
julian said:
Problem #6:

By definition

\begin{align*}
d = \min_{(x,y) \in C^2 , x \not= y} d (x,y)
\end{align*}

where ##d(x,y)## be the Hamming distance of ##x## and ##y##. A bound is proved by bounding the quantity

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y)
\end{align*}

in two different ways. On the one hand, there are ##\# C## choices for ##x## and for each such choice, there are ## \# C - 1## choices for ##y##. Since by definition ##d (x,y) \geq d## for all ##x## and ##y## (##x \not= y##), it follows that

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y) \geq \# C (\# C - 1) d .
\end{align*}

The other inequality is obtained by writing down all the ##\# C## codewords of ##C## into a ##\# C \times n##-matrix. Let ##n_{i , \alpha}## denote the number of times the element ##\alpha## of the alphabet (with ##q## elements) occurs in the ##i##th column. For each choice of ##\alpha## in the ##i##th column there are ##\# C - n_{i , \alpha}## elements not equal to ##\alpha## in the same column. Then

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y) & = \sum_{i = 1}^n \sum_{\alpha} n_{i , \alpha} (\# C - n_{i , \alpha})
\nonumber \\
& = \sum_{i = 1}^n \left( (\# C)^2 - \sum_\alpha n_{i , \alpha}^2 \right) \qquad ( \sum_{\alpha} n_{i , \alpha} = \# C)
\nonumber \\
& \leq \sum_{i = 1}^n \left( (\# C)^2 - \frac{(\# C)^2}{q} \right) \qquad ( (\# C)^2 = (\sum_{\alpha} n_{i , \alpha} \cdot 1)^2 \leq (\sum_{\alpha} n_{i , \alpha}^2) (\sum_{\alpha} 1^2) )
\nonumber \\
&= n \cdot (\# C)^2 \cdot \left( 1 - \frac{1}{q} \right) .
\end{align*}

Combining the two bounds gives

\begin{align*}
\# C (\# C - 1) d \leq (\# C)^2 \cdot n \cdot \left( \frac{q - 1}{q} \right)
\end{align*}

or

\begin{align*}
d (\# C - 1) \leq \# C \cdot n \cdot \left( \frac{q - 1}{q} \right) \qquad (*)
\end{align*}

If ##d < n \cdot \dfrac{q - 1}{q}## the bound ##(*)## can be rearranged as

\begin{align*}
\# C \leq \frac{d}{d - n \cdot \dfrac{q - 1}{q}} .
\end{align*}
The bound is called Plotkin bound.
 

Similar threads

  • · Replies 100 ·
4
Replies
100
Views
12K
  • · Replies 114 ·
4
Replies
114
Views
11K
  • · Replies 61 ·
3
Replies
61
Views
12K
  • · Replies 86 ·
3
Replies
86
Views
14K
  • · Replies 67 ·
3
Replies
67
Views
11K
  • · Replies 56 ·
2
Replies
56
Views
11K
  • · Replies 61 ·
3
Replies
61
Views
13K
  • · Replies 42 ·
2
Replies
42
Views
11K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 60 ·
3
Replies
60
Views
12K