MHB Define $f: \mathbb{Z} \to \mathbb{Z}: f^{-1}(\left\{0,1,2\right\})$

AI Thread Summary
The function f is defined as f(n) = n^2 for all n in the integers. The inverse image f^{-1}({0,1,2}) consists of integers whose squares are in the set {0,1,2}. Since no integer can square to 2, the only integers that satisfy this condition are 0, -1, and 1. Therefore, f^{-1}({0,1,2}) equals {0, -1, 1}. This clarification emphasizes the distinction between the squares of integers and the integers themselves.
Guest2
Messages
192
Reaction score
0
Define $f: \mathbb{Z} \to \mathbb{Z}$ via $f(n) = n^2$ for all $n \in \mathbb{Z}$. Why does $f^{-1}(\left\{0,1,2\right\}) = \left\{0,-1,1\right\}$? The definition I'm using is $f^{-1}{(T)} = \left\{a \in A: f(a) \in T \right\}$ so we have $f^{-1}({ \left\{0,1,2\right\} }) = \left\{n \in \mathbb{Z}: n^2 \in \left\{0,1,2\right\} \right\}$. So I could think about this as all the integers whose squares is the set $ \left\{0,1,2\right\}$ but nothing I square would give me $2$.
 
Mathematics news on Phys.org
Guest said:
Define $f: \mathbb{Z} \to \mathbb{Z}$ via $f(n) = n^2$ for all $n \in \mathbb{Z}$. Why does $f^{-1}(\left\{0,1,2\right\}) = \left\{0,-1,1\right\}$? The definition I'm using is $f^{-1}{(T)} = \left\{a \in A: f(a) \in T \right\}$ so we have $f^{-1}({ \left\{0,1,2\right\} }) = \left\{n \in \mathbb{Z}: n^2 \in \left\{0,1,2\right\} \right\}$. So I could think about this as all the integers whose squares is the set $ \left\{0,1,2\right\}$ but nothing I square would give me $2$.

Hi Guest,

Indeed, no integer squares to $2$, which is why there is no inverse of $2$.
It's not the set of integers whose squares is the set $ \left\{0,1,2\right\}$, but the set of integers that have squares in the set $ \left\{0,1,2\right\}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top